Skip to content

Commit 6afebe5

Browse files
committed
Large data files removed
1 parent 6e7f35e commit 6afebe5

File tree

300 files changed

+1210
-1205
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

300 files changed

+1210
-1205
lines changed

.gitattributes

+2
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,2 @@
1+
# Disable LF normalization for all files
2+
* -text

Analysis.m

100755100644
File mode changed.

CIF.m

+2-2
Original file line numberDiff line numberDiff line change
@@ -249,8 +249,8 @@
249249
elseif(strcmp(fitType,'binomial'))
250250
cifObj.lambdaDelta = simplify(exp(beta*cifObj.varIn + cifObj.histCoeffs*cifObj.histVars)./(1+exp(beta*cifObj.varIn + cifObj.histCoeffs*cifObj.histVars)));
251251
cifObj.lambdaDeltaGamma = simplify(exp(beta*cifObj.varIn + cifObj.histCoeffVars*cifObj.histVars)./(1+exp(beta*cifObj.varIn + cifObj.histCoeffVars*cifObj.histVars)));
252-
cifObj.lambdaDeltaFunction = matlabFunction(cifObj.lambdaDelta,'vars',[cifObj.varIn; cifObj.histVars]);
253-
cifObj.lambdaDeltaGammaFunction = matlabFunction(cifObj.lambdaDeltaGamma,'vars',[cifObj.varIn; cifObj.histVars; histCoeffsVarsTrans]);
252+
cifObj.lambdaDeltaFunction = matlabFunction(cifObj.lambdaDelta,'vars',symvar([cifObj.varIn; cifObj.histVars]));
253+
cifObj.lambdaDeltaGammaFunction = matlabFunction(cifObj.lambdaDeltaGamma,'vars',symvar([cifObj.varIn; cifObj.histVars; histCoeffsVarsTrans]));
254254
end
255255

256256

ConfidenceInterval.m

100755100644
File mode changed.

ConfigColl.m

100755100644
File mode changed.

CovColl.m

100755100644
File mode changed.

Covariate.m

100755100644
File mode changed.

DecodingAlgorithms.m

+7-7
Original file line numberDiff line numberDiff line change
@@ -38,29 +38,29 @@
3838
%all of the computations for the PPAF are done symbolically based
3939
%on the CIF object. However, it also means that this version is
4040
%must slower than the linear version below.
41-
function [x_p, W_p, x_u, W_u, x_uT,W_uT,x_pT, W_pT] = PPDecodeFilter(A, Q, dN,lambdaCIFColl,binwidth,x0,Pi0, yT,PiT,estimateTarget)
41+
function [x_p, W_p, x_u, W_u, x_uT,W_uT,x_pT, W_pT] = PPDecodeFilter(A, Q, Px0, dN,lambdaCIFColl,binwidth,x0,Pi0, yT,PiT,estimateTarget)
4242
% A can be static or can be a different matrix for each time N
4343

4444
[C,N] = size(dN); % N time samples, C cells
4545

4646
ns=size(A,1); % number of states
4747

4848

49-
if(nargin<11 || isempty(estimateTarget))
49+
if(nargin<12 || isempty(estimateTarget))
5050
estimateTarget=0;
5151
end
5252

53-
if(nargin<10 || isempty(PiT))
53+
if(nargin<11 || isempty(PiT))
5454
if(estimateTarget==1)
5555
PiT = zeros(size(Q));
5656
else
5757
PiT = 0*diag(ones(ns,1))*1e-6;
5858
end
5959
end
60-
if(nargin<8 || isempty(Pi0))
60+
if(nargin<9 || isempty(Pi0))
6161
Pi0 = zeros(ns,ns);
6262
end
63-
if(nargin<9 || isempty(yT))
63+
if(nargin<10 || isempty(yT))
6464
yT=[];
6565
Amat = A;
6666
Qmat = Q;
@@ -136,11 +136,11 @@
136136

137137
end
138138

139-
if(nargin<7 || isempty(x0))
139+
if(nargin<8 || isempty(x0))
140140
x0=zeros(size(A,2),1);
141141
end
142142

143-
if(nargin<6)
143+
if(nargin<7)
144144
binwidth = .001; % in seconds
145145
end
146146

Events.m

100755100644
File mode changed.

FitResSummary.m

100755100644
File mode changed.

FitResult.m

100755100644
File mode changed.

History.m

100755100644
File mode changed.

PointProcessSimulation.mdl.r2010b

100755100644
File mode changed.

PointProcessSimulation.mdl.r2011a

100755100644
File mode changed.

PointProcessSimulation.mdl.r2011b

100755100644
File mode changed.

PointProcessSimulationThinning.mdl

100755100644
File mode changed.

README.txt

100755100644
File mode changed.

SignalObj.m

100755100644
+3-1
Original file line numberDiff line numberDiff line change
@@ -1294,7 +1294,9 @@ function setMask(sObj, mask)
12941294
%sObjOut is a copy of sObj with the newSampleRate specified;
12951295
if(sObj.sampleRate ~=newSampleRate)
12961296
sObjOut = sObj.copySignal;
1297-
sObjOut.resampleMe(newSampleRate);
1297+
if(or(~isnan(sObjOut.sampleRate),size(sObjOut.data,1)>1))
1298+
sObjOut.resampleMe(newSampleRate);
1299+
end
12981300
else
12991301
sObjOut = sObj.copySignal;
13001302
end

Trial.m

100755100644
File mode changed.

TrialConfig.m

100755100644
File mode changed.

data/Explicit Stimulus/Dir16/Neuron1/Stim1/testdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir16/Neuron1/Stim1/trngdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir16/Neuron1/Stim2/testdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir16/Neuron1/Stim2/trngdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir16/Neuron1/Stim3/testdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir16/Neuron1/Stim3/trngdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir16/Neuron2/Stim1/testdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir16/Neuron2/Stim1/trngdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir16/Neuron2/Stim2/testdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir16/Neuron2/Stim2/trngdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir16/Neuron2/Stim3/testdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir16/Neuron2/Stim3/trngdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir3/Neuron1/Stim1/testdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir3/Neuron1/Stim1/trngdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir3/Neuron1/Stim2/Experiment2-Data.eps

100755100644
File mode changed.

data/Explicit Stimulus/Dir3/Neuron1/Stim2/Experiment2-Results.eps

100755100644
File mode changed.

data/Explicit Stimulus/Dir3/Neuron1/Stim2/testdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir3/Neuron1/Stim2/trngdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir3/Neuron1/Stim3/testdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir3/Neuron1/Stim3/trngdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir3/Neuron2/Stim1/testdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir3/Neuron2/Stim1/trngdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir3/Neuron2/Stim2/testdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir3/Neuron2/Stim2/trngdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir3/Neuron2/Stim3/testdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/Dir3/Neuron2/Stim3/trngdataBis.mat

100755100644
File mode changed.

data/Explicit Stimulus/GenCovMat.m

100755100644
File mode changed.

data/PSTH/Data Description.pdf

100755100644
File mode changed.

data/PSTH/Results.mat

100755100644
File mode changed.

data/Place Cells/PlaceCellDataAnimal1.mat

100755100644
File mode changed.

data/Place Cells/PlaceCellDataAnimal2.mat

100755100644
File mode changed.

data/Place Cells/Readme.txt

100755100644
File mode changed.

data/Place Cells/license.txt

100755100644
File mode changed.

data/glm_data.mat

100755100644
File mode changed.

data/glm_data_orig.mat

100755100644
File mode changed.

data/mEPSCs/epsc2.txt

100755100644
File mode changed.

data/mEPSCs/mEPSCAnalysis.asv

100755100644
File mode changed.

data/mEPSCs/washout1.txt

100755100644
File mode changed.

data/mEPSCs/washout2.txt

100755100644
File mode changed.

helpfiles/Analysis.html

100755100644
File mode changed.

helpfiles/AnalysisExamples.html

100755100644
+59-57
Original file line numberDiff line numberDiff line change
@@ -6,61 +6,64 @@
66
<!--
77
This HTML was auto-generated from MATLAB code.
88
To make changes, update the MATLAB code and republish this document.
9-
--><title>Analysis Examples</title><meta name="generator" content="MATLAB 7.13"><link rel="schema.DC" href="http://purl.org/dc/elements/1.1/"><meta name="DC.date" content="2012-02-29"><meta name="DC.source" content="AnalysisExamples.m"><style type="text/css">
10-
11-
body {
12-
background-color: white;
13-
margin:10px;
14-
}
15-
16-
h1 {
17-
color: #990000;
18-
font-size: x-large;
19-
}
20-
21-
h2 {
22-
color: #990000;
23-
font-size: medium;
24-
}
25-
26-
/* Make the text shrink to fit narrow windows, but not stretch too far in
27-
wide windows. */
28-
p,h1,h2,div.content div {
29-
max-width: 600px;
30-
/* Hack for IE6 */
31-
width: auto !important; width: 600px;
32-
}
33-
34-
pre.codeinput {
35-
background: #EEEEEE;
36-
padding: 10px;
37-
}
38-
@media print {
39-
pre.codeinput {word-wrap:break-word; width:100%;}
40-
}
41-
42-
span.keyword {color: #0000FF}
43-
span.comment {color: #228B22}
44-
span.string {color: #A020F0}
45-
span.untermstring {color: #B20000}
46-
span.syscmd {color: #B28C00}
47-
48-
pre.codeoutput {
49-
color: #666666;
50-
padding: 10px;
51-
}
52-
53-
pre.error {
54-
color: red;
55-
}
56-
57-
p.footer {
58-
text-align: right;
59-
font-size: xx-small;
60-
font-weight: lighter;
61-
font-style: italic;
62-
color: gray;
63-
}
9+
--><title>Analysis Examples</title><meta name="generator" content="MATLAB 8.2"><link rel="schema.DC" href="http://purl.org/dc/elements/1.1/"><meta name="DC.date" content="2013-11-20"><meta name="DC.source" content="AnalysisExamples.m"><style type="text/css">
10+
html,body,div,span,applet,object,iframe,h1,h2,h3,h4,h5,h6,p,blockquote,pre,a,abbr,acronym,address,big,cite,code,del,dfn,em,font,img,ins,kbd,q,s,samp,small,strike,strong,sub,sup,tt,var,b,u,i,center,dl,dt,dd,ol,ul,li,fieldset,form,label,legend,table,caption,tbody,tfoot,thead,tr,th,td{margin:0;padding:0;border:0;outline:0;font-size:100%;vertical-align:baseline;background:transparent}body{line-height:1}ol,ul{list-style:none}blockquote,q{quotes:none}blockquote:before,blockquote:after,q:before,q:after{content:'';content:none}:focus{outine:0}ins{text-decoration:none}del{text-decoration:line-through}table{border-collapse:collapse;border-spacing:0}
11+
12+
html { min-height:100%; margin-bottom:1px; }
13+
html body { height:100%; margin:0px; font-family:Arial, Helvetica, sans-serif; font-size:10px; color:#000; line-height:140%; background:#fff none; overflow-y:scroll; }
14+
html body td { vertical-align:top; text-align:left; }
15+
16+
h1 { padding:0px; margin:0px 0px 25px; font-family:Arial, Helvetica, sans-serif; font-size:1.5em; color:#d55000; line-height:100%; font-weight:normal; }
17+
h2 { padding:0px; margin:0px 0px 8px; font-family:Arial, Helvetica, sans-serif; font-size:1.2em; color:#000; font-weight:bold; line-height:140%; border-bottom:1px solid #d6d4d4; display:block; }
18+
h3 { padding:0px; margin:0px 0px 5px; font-family:Arial, Helvetica, sans-serif; font-size:1.1em; color:#000; font-weight:bold; line-height:140%; }
19+
20+
a { color:#005fce; text-decoration:none; }
21+
a:hover { color:#005fce; text-decoration:underline; }
22+
a:visited { color:#004aa0; text-decoration:none; }
23+
24+
p { padding:0px; margin:0px 0px 20px; }
25+
img { padding:0px; margin:0px 0px 20px; border:none; }
26+
p img, pre img, tt img, li img { margin-bottom:0px; }
27+
28+
ul { padding:0px; margin:0px 0px 20px 23px; list-style:square; }
29+
ul li { padding:0px; margin:0px 0px 7px 0px; }
30+
ul li ul { padding:5px 0px 0px; margin:0px 0px 7px 23px; }
31+
ul li ol li { list-style:decimal; }
32+
ol { padding:0px; margin:0px 0px 20px 0px; list-style:decimal; }
33+
ol li { padding:0px; margin:0px 0px 7px 23px; list-style-type:decimal; }
34+
ol li ol { padding:5px 0px 0px; margin:0px 0px 7px 0px; }
35+
ol li ol li { list-style-type:lower-alpha; }
36+
ol li ul { padding-top:7px; }
37+
ol li ul li { list-style:square; }
38+
39+
.content { font-size:1.2em; line-height:140%; padding: 20px; }
40+
41+
pre, tt, code { font-size:12px; }
42+
pre { margin:0px 0px 20px; }
43+
pre.error { color:red; }
44+
pre.codeinput { padding:10px; border:1px solid #d3d3d3; background:#f7f7f7; }
45+
pre.codeoutput { padding:10px 11px; margin:0px 0px 20px; color:#4c4c4c; }
46+
47+
@media print { pre.codeinput, pre.codeoutput { word-wrap:break-word; width:100%; } }
48+
49+
span.keyword { color:#0000FF }
50+
span.comment { color:#228B22 }
51+
span.string { color:#A020F0 }
52+
span.untermstring { color:#B20000 }
53+
span.syscmd { color:#B28C00 }
54+
55+
.footer { width:auto; padding:10px 0px; margin:25px 0px 0px; border-top:1px dotted #878787; font-size:0.8em; line-height:140%; font-style:italic; color:#878787; text-align:left; float:none; }
56+
.footer p { margin:0px; }
57+
.footer a { color:#878787; }
58+
.footer a:hover { color:#878787; text-decoration:underline; }
59+
.footer a:visited { color:#878787; }
60+
61+
table th { padding:7px 5px; text-align:left; vertical-align:middle; border: 1px solid #d6d4d4; font-weight:bold; }
62+
table td { padding:7px 5px; text-align:left; vertical-align:top; border:1px solid #d6d4d4; }
63+
64+
65+
66+
6467

6568
</style></head><body><div class="content"><h1>Analysis Examples</h1><!--introduction--><p>This is an example on the standard approach to fitting GLM models to spike train data. This data set was obtained at the Society For Neuroscience '08 Workshop on <a href="http://www.sfn.org/index.aspx?pagename=ShortCourse3_2008">Workshop on Neural Signal Processing</a> Compare to analysis with <a href="matlab:web('AnalysisExamples2.html','-helpbrowser')">Neural Spike Analysis Toolbox</a></p><!--/introduction--><h2>Contents</h2><div><ul><li><a href="#1">Example 1: Tradition Preliminary Analysis</a></li></ul></div><h2>Example 1: Tradition Preliminary Analysis<a name="1"></a></h2><pre class="codeinput"><span class="comment">% Script glm_part1.m</span>
6669
<span class="comment">% MATLAB code to visualize data, fit a GLM model of the relation between</span>
@@ -138,8 +141,7 @@
138141
ylabel(<span class="string">'Empirical CDF of Rescaled ISIs'</span>);
139142
title(<span class="string">'KS Plot with 95% Confidence Intervals'</span>);
140143
legend(<span class="string">'Linear'</span>,<span class="string">'Quadratic'</span>);
141-
</pre><img vspace="5" hspace="5" src="AnalysisExamples_04.png" alt=""> <p class="footer"><br>
142-
Published with MATLAB&reg; 7.13<br></p></div><!--
144+
</pre><img vspace="5" hspace="5" src="AnalysisExamples_04.png" alt=""> <p class="footer"><br><a href="http://www.mathworks.com/products/matlab/">Published with MATLAB&reg; R2013b</a><br></p></div><!--
143145
##### SOURCE BEGIN #####
144146
%% Analysis Examples
145147
% This is an example on the standard approach to fitting GLM models to

helpfiles/AnalysisExamples.m

100755100644
File mode changed.

helpfiles/AnalysisExamples.png

100755100644
-325 Bytes

helpfiles/AnalysisExamples2.html

100755100644
+71-62
Original file line numberDiff line numberDiff line change
@@ -6,61 +6,64 @@
66
<!--
77
This HTML was auto-generated from MATLAB code.
88
To make changes, update the MATLAB code and republish this document.
9-
--><title>AnalysisExamples2</title><meta name="generator" content="MATLAB 7.13"><link rel="schema.DC" href="http://purl.org/dc/elements/1.1/"><meta name="DC.date" content="2012-03-02"><meta name="DC.source" content="AnalysisExamples2.m"><style type="text/css">
9+
--><title>AnalysisExamples2</title><meta name="generator" content="MATLAB 8.2"><link rel="schema.DC" href="http://purl.org/dc/elements/1.1/"><meta name="DC.date" content="2013-11-20"><meta name="DC.source" content="AnalysisExamples2.m"><style type="text/css">
10+
html,body,div,span,applet,object,iframe,h1,h2,h3,h4,h5,h6,p,blockquote,pre,a,abbr,acronym,address,big,cite,code,del,dfn,em,font,img,ins,kbd,q,s,samp,small,strike,strong,sub,sup,tt,var,b,u,i,center,dl,dt,dd,ol,ul,li,fieldset,form,label,legend,table,caption,tbody,tfoot,thead,tr,th,td{margin:0;padding:0;border:0;outline:0;font-size:100%;vertical-align:baseline;background:transparent}body{line-height:1}ol,ul{list-style:none}blockquote,q{quotes:none}blockquote:before,blockquote:after,q:before,q:after{content:'';content:none}:focus{outine:0}ins{text-decoration:none}del{text-decoration:line-through}table{border-collapse:collapse;border-spacing:0}
1011

11-
body {
12-
background-color: white;
13-
margin:10px;
14-
}
12+
html { min-height:100%; margin-bottom:1px; }
13+
html body { height:100%; margin:0px; font-family:Arial, Helvetica, sans-serif; font-size:10px; color:#000; line-height:140%; background:#fff none; overflow-y:scroll; }
14+
html body td { vertical-align:top; text-align:left; }
1515

16-
h1 {
17-
color: #990000;
18-
font-size: x-large;
19-
}
16+
h1 { padding:0px; margin:0px 0px 25px; font-family:Arial, Helvetica, sans-serif; font-size:1.5em; color:#d55000; line-height:100%; font-weight:normal; }
17+
h2 { padding:0px; margin:0px 0px 8px; font-family:Arial, Helvetica, sans-serif; font-size:1.2em; color:#000; font-weight:bold; line-height:140%; border-bottom:1px solid #d6d4d4; display:block; }
18+
h3 { padding:0px; margin:0px 0px 5px; font-family:Arial, Helvetica, sans-serif; font-size:1.1em; color:#000; font-weight:bold; line-height:140%; }
2019

21-
h2 {
22-
color: #990000;
23-
font-size: medium;
24-
}
20+
a { color:#005fce; text-decoration:none; }
21+
a:hover { color:#005fce; text-decoration:underline; }
22+
a:visited { color:#004aa0; text-decoration:none; }
2523

26-
/* Make the text shrink to fit narrow windows, but not stretch too far in
27-
wide windows. */
28-
p,h1,h2,div.content div {
29-
max-width: 600px;
30-
/* Hack for IE6 */
31-
width: auto !important; width: 600px;
32-
}
24+
p { padding:0px; margin:0px 0px 20px; }
25+
img { padding:0px; margin:0px 0px 20px; border:none; }
26+
p img, pre img, tt img, li img { margin-bottom:0px; }
3327

34-
pre.codeinput {
35-
background: #EEEEEE;
36-
padding: 10px;
37-
}
38-
@media print {
39-
pre.codeinput {word-wrap:break-word; width:100%;}
40-
}
28+
ul { padding:0px; margin:0px 0px 20px 23px; list-style:square; }
29+
ul li { padding:0px; margin:0px 0px 7px 0px; }
30+
ul li ul { padding:5px 0px 0px; margin:0px 0px 7px 23px; }
31+
ul li ol li { list-style:decimal; }
32+
ol { padding:0px; margin:0px 0px 20px 0px; list-style:decimal; }
33+
ol li { padding:0px; margin:0px 0px 7px 23px; list-style-type:decimal; }
34+
ol li ol { padding:5px 0px 0px; margin:0px 0px 7px 0px; }
35+
ol li ol li { list-style-type:lower-alpha; }
36+
ol li ul { padding-top:7px; }
37+
ol li ul li { list-style:square; }
38+
39+
.content { font-size:1.2em; line-height:140%; padding: 20px; }
40+
41+
pre, tt, code { font-size:12px; }
42+
pre { margin:0px 0px 20px; }
43+
pre.error { color:red; }
44+
pre.codeinput { padding:10px; border:1px solid #d3d3d3; background:#f7f7f7; }
45+
pre.codeoutput { padding:10px 11px; margin:0px 0px 20px; color:#4c4c4c; }
46+
47+
@media print { pre.codeinput, pre.codeoutput { word-wrap:break-word; width:100%; } }
48+
49+
span.keyword { color:#0000FF }
50+
span.comment { color:#228B22 }
51+
span.string { color:#A020F0 }
52+
span.untermstring { color:#B20000 }
53+
span.syscmd { color:#B28C00 }
54+
55+
.footer { width:auto; padding:10px 0px; margin:25px 0px 0px; border-top:1px dotted #878787; font-size:0.8em; line-height:140%; font-style:italic; color:#878787; text-align:left; float:none; }
56+
.footer p { margin:0px; }
57+
.footer a { color:#878787; }
58+
.footer a:hover { color:#878787; text-decoration:underline; }
59+
.footer a:visited { color:#878787; }
60+
61+
table th { padding:7px 5px; text-align:left; vertical-align:middle; border: 1px solid #d6d4d4; font-weight:bold; }
62+
table td { padding:7px 5px; text-align:left; vertical-align:top; border:1px solid #d6d4d4; }
4163

42-
span.keyword {color: #0000FF}
43-
span.comment {color: #228B22}
44-
span.string {color: #A020F0}
45-
span.untermstring {color: #B20000}
46-
span.syscmd {color: #B28C00}
4764

48-
pre.codeoutput {
49-
color: #666666;
50-
padding: 10px;
51-
}
5265

53-
pre.error {
54-
color: red;
55-
}
5666

57-
p.footer {
58-
text-align: right;
59-
font-size: xx-small;
60-
font-weight: lighter;
61-
font-style: italic;
62-
color: gray;
63-
}
6467

6568
</style></head><body><div class="content"><h2>Contents</h2><div><ul><li><a href="#1">Analysis Examples 2</a></li><li><a href="#8">Toolbox vs. Standard GLM comparison</a></li><li><a href="#9">Compute the history effect</a></li></ul></div><h2>Analysis Examples 2<a name="1"></a></h2><p>Compare with traditional Neural Spike Train Analysis <a href="matlab:web('AnalysisExamples.html','-helpbrowser')">here</a></p><pre class="codeinput"><span class="comment">% load the rat trajectory and spiking data;</span>
6669
close <span class="string">all</span>;
@@ -86,7 +89,7 @@
8689
covarColl = CovColl({baseline,radial});
8790
trial = Trial(spikeColl,covarColl);
8891
clear <span class="string">tc</span>;
89-
sampleRate=30;
92+
sampleRate=1000;
9093
<span class="comment">% tcObj=TrialConfig(covMask,sampleRate, history,minTime,maxTime)</span>
9194
tc{1} = TrialConfig({{<span class="string">'Baseline'</span>,<span class="string">'mu'</span>},{<span class="string">'Radial'</span>,<span class="string">'x'</span>,<span class="string">'y'</span>}},sampleRate,[]); tc{1}.setName(<span class="string">'Linear'</span>);
9295
tc{2} = TrialConfig({{<span class="string">'Baseline'</span>,<span class="string">'mu'</span>},{<span class="string">'Radial'</span>,<span class="string">'x'</span>,<span class="string">'y'</span>,<span class="string">'x^2'</span>,<span class="string">'y^2'</span>,<span class="string">'x*y'</span>}},sampleRate,[]); tc{2}.setName(<span class="string">'Quadratic'</span>);
@@ -129,27 +132,32 @@
129132
</pre><pre class="codeoutput">
130133
ans =
131134

132-
-0.0011
133-
0.0050
134-
0.0034
135-
0.0069
136-
0.0077
137-
0.0165
135+
3.5041
136+
0.0099
137+
0.0102
138+
0.0210
139+
0.0215
140+
0.0172
138141

139-
</pre><h2>Compute the history effect<a name="9"></a></h2><pre class="codeinput">sampleRate=30; makePlot=1; neuronNum = 1;
140-
covLabels = {{<span class="string">'Baseline'</span>,<span class="string">'mu'</span>}};
142+
</pre><h2>Compute the history effect<a name="9"></a></h2><pre class="codeinput">sampleRate=1000; makePlot=1; neuronNum = 1;
143+
covLabels = {{<span class="string">'Baseline'</span>,<span class="string">'mu'</span>},{<span class="string">'Radial'</span>,<span class="string">'x'</span>,<span class="string">'y'</span>,<span class="string">'x^2'</span>,<span class="string">'y^2'</span>,<span class="string">'x*y'</span>}};
141144
Algorithm = <span class="string">'GLM'</span>;
142145
batchMode=0;
143-
windowTimes =(0:2:10)./sampleRate;
146+
windowTimes =(0:1:10)./sampleRate;
147+
<span class="comment">% [fitResults,tcc] = computeHistLag(tObj,neuronNum,windowTimes,CovLabels,Algorithm,batchMode,sampleRate,makePlot,histMinTimes,histMaxTimes)</span>
144148
[fitResults,tcc] = Analysis.computeHistLag(trial,neuronNum,windowTimes,covLabels,Algorithm,batchMode,sampleRate,makePlot);
145149
</pre><pre class="codeoutput">Analyzing Configuration #1: Neuron #1
146150
Analyzing Configuration #2: Neuron #1
147151
Analyzing Configuration #3: Neuron #1
148152
Analyzing Configuration #4: Neuron #1
149153
Analyzing Configuration #5: Neuron #1
150154
Analyzing Configuration #6: Neuron #1
151-
</pre><img vspace="5" hspace="5" src="AnalysisExamples2_04.png" alt=""> <p class="footer"><br>
152-
Published with MATLAB&reg; 7.13<br></p></div><!--
155+
Analyzing Configuration #7: Neuron #1
156+
Analyzing Configuration #8: Neuron #1
157+
Analyzing Configuration #9: Neuron #1
158+
Analyzing Configuration #10: Neuron #1
159+
Analyzing Configuration #11: Neuron #1
160+
</pre><img vspace="5" hspace="5" src="AnalysisExamples2_04.png" alt=""> <p class="footer"><br><a href="http://www.mathworks.com/products/matlab/">Published with MATLAB&reg; R2013b</a><br></p></div><!--
153161
##### SOURCE BEGIN #####
154162
%% Analysis Examples 2
155163
% Compare with traditional Neural Spike Train Analysis
@@ -196,7 +204,7 @@
196204
covarColl = CovColl({baseline,radial});
197205
trial = Trial(spikeColl,covarColl);
198206
clear tc;
199-
sampleRate=30;
207+
sampleRate=1000;
200208
% tcObj=TrialConfig(covMask,sampleRate, history,minTime,maxTime)
201209
tc{1} = TrialConfig({{'Baseline','mu'},{'Radial','x','y'}},sampleRate,[]); tc{1}.setName('Linear');
202210
tc{2} = TrialConfig({{'Baseline','mu'},{'Radial','x','y','x^2','y^2','x*y'}},sampleRate,[]); tc{2}.setName('Quadratic');
@@ -247,11 +255,12 @@
247255
248256
249257
%% Compute the history effect
250-
sampleRate=30; makePlot=1; neuronNum = 1;
251-
covLabels = {{'Baseline','mu'}};
258+
sampleRate=1000; makePlot=1; neuronNum = 1;
259+
covLabels = {{'Baseline','mu'},{'Radial','x','y','x^2','y^2','x*y'}};
252260
Algorithm = 'GLM';
253261
batchMode=0;
254-
windowTimes =(0:2:10)./sampleRate;
262+
windowTimes =(0:1:10)./sampleRate;
263+
% [fitResults,tcc] = computeHistLag(tObj,neuronNum,windowTimes,CovLabels,Algorithm,batchMode,sampleRate,makePlot,histMinTimes,histMaxTimes)
255264
[fitResults,tcc] = Analysis.computeHistLag(trial,neuronNum,windowTimes,covLabels,Algorithm,batchMode,sampleRate,makePlot);
256265
257266
##### SOURCE END #####

0 commit comments

Comments
 (0)