-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
54 lines (45 loc) · 1.87 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import click
import torch
from aitemplate.testing.benchmark_pt import benchmark_torch_function
from diffusers import EulerDiscreteScheduler
from pipeline_stable_diffusion_ait import StableDiffusionAITPipeline
@click.command()
@click.option("--token", default="", help="access token")
@click.option("--width", default=512, help="Width of generated image")
@click.option("--height", default=512, help="Height of generated image")
@click.option("--prompt", default="A vision of paradise, Unreal Engine", help="prompt")
@click.option(
"--benchmark", type=bool, default=False, help="run stable diffusion e2e benchmark"
)
def run(token, width, height, prompt, benchmark):
model_id = "stabilityai/stable-diffusion-2"
scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionAITPipeline.from_pretrained(
model_id,
scheduler=scheduler,
revision="fp16",
torch_dtype=torch.float16,
use_auth_token=token,
).to("cuda")
with torch.autocast("cuda"):
image = pipe(prompt, height, width).images[0]
if benchmark:
t = benchmark_torch_function(10, pipe, prompt)
print(f"sd e2e: {t} ms")
image.save("example_ait.png")
if __name__ == "__main__":
run()