-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_img2img.py
69 lines (58 loc) · 2.32 KB
/
demo_img2img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from io import BytesIO
import click
import requests
import torch
from aitemplate.testing.benchmark_pt import benchmark_torch_function
from PIL import Image
from pipeline_stable_diffusion_img2img_ait import StableDiffusionImg2ImgAITPipeline
@click.command()
@click.option("--token", default="", help="access token")
@click.option("--width", default=512, help="Width of generated image")
@click.option("--height", default=512, help="Height of generated image")
@click.option(
"--prompt", default="A fantasy landscape, trending on artstation", help="prompt"
)
@click.option(
"--benchmark", type=bool, default=False, help="run stable diffusion e2e benchmark"
)
def run(token, width, height, prompt, benchmark):
# load the pipeline
device = "cuda"
model_id_or_path = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionImg2ImgAITPipeline.from_pretrained(
model_id_or_path,
revision="fp16",
torch_dtype=torch.float16,
use_auth_token=token,
)
pipe = pipe.to(device)
# let's download an initial image
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((height, width))
with torch.autocast("cuda"):
images = pipe(
prompt=prompt, init_image=init_image, strength=0.75, guidance_scale=7.5
).images
if benchmark:
args = (prompt, init_image)
t = benchmark_torch_function(10, pipe, *args)
print(f"sd e2e: {t} ms")
images[0].save("fantasy_landscape_ait.png")
if __name__ == "__main__":
run()