-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmain.py
85 lines (74 loc) · 2.96 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import tensorflow as tf
from transformers import GPT2Tokenizer, TFGPT2LMHeadModel, AutoTokenizer, TFAutoModel
from modules.chatbot.inferencer import Inferencer
from modules.chatbot.dataloader import convert, get_bert_index, get_dataset
from modules.chatbot.config import Config as CONF
from colorama import Fore, Back, Style
import warnings
import logging
warnings.filterwarnings("ignore")
logging.basicConfig(level=logging.CRITICAL)
def main():
# Load the chatbot model from the config.
gpt2_tokenizer = GPT2Tokenizer.from_pretrained(CONF.chat_params["gpt_tok"])
medi_qa_chatGPT2 = TFGPT2LMHeadModel.from_pretrained(
CONF.chat_params["tf_gpt_model"]
)
biobert_tokenizer = AutoTokenizer.from_pretrained(CONF.chat_params["bert_tok"])
try:
question_extractor_model_v1 = tf.keras.models.load_model(
CONF.chat_params["tf_q_extractor"]
)
except Exception as e:
print(e)
df_qa = get_dataset(CONF.chat_params["data"])
max_answer_len = CONF.chat_params["max_answer_len"]
isEval = CONF.chat_params["isEval"]
# Get answer index from Answer from FFNN embedding column.
answer_index = get_bert_index(df_qa, "A_FFNN_embeds")
# Make chatbot inference object
cahtbot = Inferencer(
medi_qa_chatGPT2,
biobert_tokenizer,
gpt2_tokenizer,
question_extractor_model_v1,
df_qa,
answer_index,
max_answer_len,
)
# Start chatbot
print("========================================")
print(Back.BLUE + " Welcome to MediChatBot " + Back.RESET)
print("========================================")
print("If you enter quit, q, stop, chat will be ended.")
print(
"MediChatBot v1 is not an official service and is not responsible for any usage."
)
print(
"Please enter your message below.\nThis chatbot is not sufficiently trained and the dataset is not properly cleaned, so it does not have a meaning beyond the demo version."
)
# Chat
while True:
user_input = input(Fore.BLUE + "You: " + Fore.RESET)
if user_input.lower() in ["quit", "q", "stop"]:
print("========================================")
print(
Fore.RED
+ " Chat Ended. "
+ Fore.RESET
+ "\n\nThank you for using DSDanielPark's chatbot. Please visit our GitHub and Hugging Face for more information. \n\n - github: https://github.com/DSDanielPark/GPT-BERT-Medical-QA-Chatbot \n - hugging-face: https://huggingface.co/datasets/danielpark/MQuAD-v1 "
)
print("========================================")
break
response = cahtbot.run(user_input, isEval)
print(
Fore.BLUE
+ Style.BRIGHT
+ "MediChatBot: "
+ response
+ Fore.RESET
+ Style.RESET_ALL
)
response = ""
if __name__ == "__main__":
main()