-
Notifications
You must be signed in to change notification settings - Fork 0
/
cppo_agent.py
248 lines (215 loc) · 10.7 KB
/
cppo_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import time
import numpy as np
import tensorflow as tf
from baselines.common import explained_variance
from baselines.common.mpi_moments import mpi_moments
from baselines.common.running_mean_std import RunningMeanStd
from mpi4py import MPI
from scipy import stats
from mpi_utils import MpiAdamOptimizer
from rollouts import Rollout
from utils import bcast_tf_vars_from_root, get_mean_and_std
from vec_env import ShmemVecEnv as VecEnv
getsess = tf.get_default_session
class PpoOptimizer(object):
envs = None
def __init__(self, *, scope, ob_space, ac_space, stochpol,
ent_coef, gamma, lam, nepochs, lr, cliprange,
nminibatches,
normrew, normadv, use_news, ext_coeff, int_coeff,
nsteps_per_seg, nsegs_per_env, dynamics, intrinsic_ratio):
self.dynamics = dynamics
with tf.variable_scope(scope):
self.use_recorder = True
self.n_updates = 0
self.scope = scope
self.ob_space = ob_space
self.ac_space = ac_space
self.stochpol = stochpol
self.nepochs = nepochs
self.lr = lr
self.cliprange = cliprange
self.nsteps_per_seg = nsteps_per_seg
self.nsegs_per_env = nsegs_per_env
self.nminibatches = nminibatches
self.gamma = gamma
self.lam = lam
self.normrew = normrew
self.normadv = normadv
self.use_news = use_news
self.ext_coeff = ext_coeff
self.int_coeff = int_coeff
self.intrinsic_ratio = intrinsic_ratio
self.ph_adv = tf.placeholder(tf.float32, [None, None])
self.ph_ret = tf.placeholder(tf.float32, [None, None])
self.ph_rews = tf.placeholder(tf.float32, [None, None])
self.ph_oldnlp = tf.placeholder(tf.float32, [None, None])
self.ph_oldvpred = tf.placeholder(tf.float32, [None, None])
self.ph_lr = tf.placeholder(tf.float32, [])
self.ph_cliprange = tf.placeholder(tf.float32, [])
neglogpac = self.stochpol.pd.neglogp(self.stochpol.ph_ac)
entropy = tf.reduce_mean(self.stochpol.pd.entropy())
vpred = self.stochpol.vpred
vf_loss = 0.5 * tf.reduce_mean((vpred - self.ph_ret) ** 2)
ratio = tf.exp(self.ph_oldnlp - neglogpac) # p_new / p_old
negadv = - self.ph_adv
pg_losses1 = negadv * ratio
pg_losses2 = negadv * tf.clip_by_value(ratio, 1.0 - self.ph_cliprange, 1.0 + self.ph_cliprange)
pg_loss_surr = tf.maximum(pg_losses1, pg_losses2)
pg_loss = tf.reduce_mean(pg_loss_surr)
ent_loss = (- ent_coef) * entropy
approxkl = .5 * tf.reduce_mean(tf.square(neglogpac - self.ph_oldnlp))
clipfrac = tf.reduce_mean(tf.to_float(tf.abs(pg_losses2 - pg_loss_surr) > 1e-6))
self.total_loss = pg_loss + ent_loss + vf_loss
self.to_report = {'tot': self.total_loss, 'pg': pg_loss, 'vf': vf_loss, 'ent': entropy,
'approxkl': approxkl, 'clipfrac': clipfrac}
def start_interaction(self, env_fns, dynamics, nlump=2):
self.loss_names, self._losses = zip(*list(self.to_report.items()))
params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
if MPI.COMM_WORLD.Get_size() > 1:
trainer = MpiAdamOptimizer(learning_rate=self.ph_lr, comm=MPI.COMM_WORLD)
else:
trainer = tf.train.AdamOptimizer(learning_rate=self.ph_lr)
gradsandvars = trainer.compute_gradients(self.total_loss, params)
self._train = trainer.apply_gradients(gradsandvars)
if MPI.COMM_WORLD.Get_rank() == 0:
getsess().run(tf.variables_initializer(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)))
bcast_tf_vars_from_root(getsess(), tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES))
self.all_visited_rooms = []
self.all_scores = []
self.nenvs = nenvs = len(env_fns)
self.nlump = nlump
self.lump_stride = nenvs // self.nlump
self.envs = [
VecEnv(env_fns[l * self.lump_stride: (l + 1) * self.lump_stride], spaces=[self.ob_space, self.ac_space]) for
l in range(self.nlump)]
self.rollout = Rollout(ob_space=self.ob_space, ac_space=self.ac_space, nenvs=nenvs,
nsteps_per_seg=self.nsteps_per_seg,
nsegs_per_env=self.nsegs_per_env, nlumps=self.nlump,
envs=self.envs,
policy=self.stochpol,
int_rew_coeff=self.int_coeff,
ext_rew_coeff=self.ext_coeff,
record_rollouts=self.use_recorder,
dynamics=dynamics,
intrinsic_ratio=self.intrinsic_ratio)
self.buf_advs = np.zeros((nenvs, self.rollout.nsteps), np.float32)
self.buf_rets = np.zeros((nenvs, self.rollout.nsteps), np.float32)
if self.normrew:
self.rff = RewardForwardFilter(self.gamma)
self.rff_rms = RunningMeanStd()
self.step_count = 0
self.t_last_update = time.time()
self.t_start = time.time()
def stop_interaction(self):
for env in self.envs:
env.close()
def calculate_advantages(self, rews, use_news, gamma, lam):
nsteps = self.rollout.nsteps
lastgaelam = 0
for t in range(nsteps - 1, -1, -1): # nsteps-2 ... 0
nextnew = self.rollout.buf_news[:, t + 1] if t + 1 < nsteps else self.rollout.buf_new_last
if not use_news:
nextnew = 0
nextvals = self.rollout.buf_vpreds[:, t + 1] if t + 1 < nsteps else self.rollout.buf_vpred_last
nextnotnew = 1 - nextnew
delta = rews[:, t] + gamma * nextvals * nextnotnew - self.rollout.buf_vpreds[:, t]
self.buf_advs[:, t] = lastgaelam = delta + gamma * lam * nextnotnew * lastgaelam
self.buf_rets[:] = self.buf_advs + self.rollout.buf_vpreds
def update(self):
if self.normrew:
rffs = np.array([self.rff.update(rew) for rew in self.rollout.buf_rews.T])
rffs_mean, rffs_std, rffs_count = mpi_moments(rffs.ravel())
self.rff_rms.update_from_moments(rffs_mean, rffs_std ** 2, rffs_count)
rews = self.rollout.buf_rews / np.sqrt(self.rff_rms.var)
else:
rews = np.copy(self.rollout.buf_rews)
self.calculate_advantages(rews=rews, use_news=self.use_news, gamma=self.gamma, lam=self.lam)
info = dict(
advmean=self.buf_advs.mean(),
advstd=self.buf_advs.std(),
retmean=self.buf_rets.mean(),
retstd=self.buf_rets.std(),
vpredmean=self.rollout.buf_vpreds.mean(),
vpredstd=self.rollout.buf_vpreds.std(),
ev=explained_variance(self.rollout.buf_vpreds.ravel(), self.buf_rets.ravel()),
rew_mean=np.mean(self.rollout.buf_rews),
recent_best_ext_ret=self.rollout.current_max
)
if self.rollout.best_ext_ret is not None:
info['best_ext_ret'] = self.rollout.best_ext_ret
# normalize advantages
if self.normadv:
m, s = get_mean_and_std(self.buf_advs)
self.buf_advs = (self.buf_advs - m) / (s + 1e-7)
envsperbatch = (self.nenvs * self.nsegs_per_env) // self.nminibatches
envsperbatch = max(1, envsperbatch)
envinds = np.arange(self.nenvs * self.nsegs_per_env)
def resh(x):
if self.nsegs_per_env == 1:
return x
sh = x.shape
return x.reshape((sh[0] * self.nsegs_per_env, self.nsteps_per_seg) + sh[2:])
ph_buf = [
(self.stochpol.ph_ac, resh(self.rollout.buf_acs)),
(self.ph_rews, resh(self.rollout.buf_rews)),
(self.ph_oldvpred, resh(self.rollout.buf_vpreds)),
(self.ph_oldnlp, resh(self.rollout.buf_nlps)),
(self.stochpol.ph_ob, resh(self.rollout.buf_obs)),
(self.ph_ret, resh(self.buf_rets)),
(self.ph_adv, resh(self.buf_advs)),
]
ph_buf.extend([
(self.dynamics.last_ob,
self.rollout.buf_obs_last.reshape([self.nenvs * self.nsegs_per_env, 1, *self.ob_space.shape]))
])
mblossvals = []
for _ in range(self.nepochs):
np.random.shuffle(envinds)
for start in range(0, self.nenvs * self.nsegs_per_env, envsperbatch):
end = start + envsperbatch
mbenvinds = envinds[start:end]
fd = {ph: buf[mbenvinds] for (ph, buf) in ph_buf}
fd.update({self.ph_lr: self.lr, self.ph_cliprange: self.cliprange})
mblossvals.append(getsess().run(self._losses + (self._train,), fd)[:-1])
mblossvals = [mblossvals[0]]
info.update(zip(['opt_' + ln for ln in self.loss_names], np.mean([mblossvals[0]], axis=0)))
info["rank"] = MPI.COMM_WORLD.Get_rank()
self.n_updates += 1
info["n_updates"] = self.n_updates
info.update({dn: (np.mean(dvs) if len(dvs) > 0 else 0) for (dn, dvs) in self.rollout.statlists.items()})
info.update(self.rollout.stats)
if "states_visited" in info:
info.pop("states_visited")
tnow = time.time()
info["ups"] = 1. / (tnow - self.t_last_update)
info["total_secs"] = tnow - self.t_start
info['tps'] = MPI.COMM_WORLD.Get_size() * self.rollout.nsteps * self.nenvs / (tnow - self.t_last_update)
self.t_last_update = tnow
# Add reward correlation to info
info["int_fm_loss_weight"] = self.rollout.intrinsic_ratio
info["int_fm_loss_rew"] = self.rollout.fm_loss_int_rew.mean()
info["int_uncertainity_rew"] = self.rollout.uncertainty_int_rew.mean()
info["int_total_rew"] = self.rollout.int_total_rew.mean()
info["int_rew_corr"] = stats.pearsonr(self.rollout.fm_loss_int_rew.reshape(-1), self.rollout.uncertainty_int_rew.reshape(-1))[0]
info["ext_coeff"] = self.ext_coeff
info["int_coeff"] = self.int_coeff
return info
def step(self):
self.rollout.collect_rollout()
update_info = self.update()
return {'update': update_info}
def get_var_values(self):
return self.stochpol.get_var_values()
def set_var_values(self, vv):
self.stochpol.set_var_values(vv)
class RewardForwardFilter(object):
def __init__(self, gamma):
self.rewems = None
self.gamma = gamma
def update(self, rews):
if self.rewems is None:
self.rewems = rews
else:
self.rewems = self.rewems * self.gamma + rews
return self.rewems