-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathgpumain.cpp
652 lines (640 loc) · 28.4 KB
/
gpumain.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
//#include "uebpg.h"
//#include "nctest.h"
//#include"mpi.h"
#include "gpuuebpgdecls.h"
#include <time.h>
//#include <queue>
#pragma warning(disable : 4996)
using namespace std;
__global__ void callUEBRun(uebCell *uebCellArray, int nCells)
{
int indx = blockIdx.x*blockDim.x + threadIdx.x;
if (indx < nCells)
{
//float *dev_loOutArr = NULL;
//cudaMalloc(&dev_loOutArr, 700000 * sizeof(float));
uebCellArray[indx].runUEB();
}
}
__device__ __host__ void cuda_checkERR(cudaError_t err)
{
if (err != cudaSuccess){
std::cout << "Error: " << cudaGetErrorString(err) << endl;
exit(EXIT_FAILURE);
}
}
__host__ __device__ void checkDeviceMemory()
{
//mem check on device
size_t freeM, totalM;
float freeMB, totalMB, allocMB;
cudaMemGetInfo((size_t*)&freeM, (size_t*)&totalM);
freeMB = (size_t)freeM / (1024*1024);
totalMB = (size_t)totalM / (1024*1024);
allocMB = totalMB - freeMB;
printf(" %f MB of %f MB total available device memory allocated. Remaining memory = %f MB\n", allocMB, totalMB, freeMB);
}
__host__ __device__ void estimateThroughput(size_t dataSize, clock_t beginTime, clock_t endTime)
{
double bandWidth = dataSize * 2.0;
double GFLOPs = (double)(bandWidth * CLOCKS_PER_SEC) / (double)(endTime - beginTime);
printf(" Estimated throughput = %lf GFLOPs\n", GFLOPs);
}
int main(int argc, char* argv[])
{
//gpu control
int threadsPerBlock = 255, blocksPerGrid = 1;
//time
float timeControl = 0.0, timeWS = 0.0, timeSitestate = 0.0, timeTSArrays = 0.0, timeParam = 0.0, timeParamSiteInptcontrol = 0.0, timeModelRun = 0.0;
float* OutVarValues; //= new float*[70]; //[70];
float*** aggoutvarArray = NULL;
float ***ncoutArray = NULL;
char conFile[256], paramFile1[256], sitevarFile1[256], inputconFile1[256], outputconFile1[256], watershedFile1[256], aggoutputconFile1[256], aggoutputFile1[256];
char wsvarName1[256], wsycorName1[256], wsxcorName1[256];
int **wsArray = NULL;
int dimlen1 = 0, dimlen2 = 0;
int wsfillVal = -9999;
float SiteState[32];
float *wsxcorArray = NULL, *wsycorArray = NULL;
//params ParamVAlues;
sitevar *strsvArray = new sitevar[32];
char * svFile[32];
char * svVarName[32];
for (int i = 0; i < 32; i++){
svFile[i] = new char[256];
svVarName[i] = new char[256];
}
int svType[32];
//inpforcvar strinpforcArray[13];
//outputs
pointOutput *pOut = NULL;
ncOutput *ncOut = NULL;
aggOutput *aggOut = NULL;
int npout = 0, nncout = 0, naggout = 0, nZones = 0;
const char * zName = "Outletlocations"; //12.24.14 watershed zonning for aggregation--
float *z_ycor = NULL;
float *z_xcor = NULL;
int zoneid = 0;
int *ZonesArr = NULL;
//inptimeseries *strintsArray[11];
float ***RegArray[13] = { NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; //3.19.15 [5]; // [xstride]; //assuming max nc files for a variable =5
//float *tcorvar[13], *tsvarArray[13],
float *ycorArr = NULL, *xcorArr = NULL;
int ncTotaltimestep[13] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
int numNc[13] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; //6.24.14
size_t ntimesteps = 0, nysteps = 0, nxsteps = 0;
int tinitTime = 0;
int npar = 32;
/*int NUMtimeSTEP,NREFYR,NREFMO,NREFDAY,NumOP;*/
int ModelStartDate[3], ModelEndDate[3]; //check this
double ModelStartHour, ModelEndHour, ModelDt, ModelUTCOffset;
double modelSpan;
int inpDailyorSubdaily;
//int numTimeStep;
int numOut = 70;
char headerLine[256];
int retvalue = 0;
int numgrid = 0;
const char* tNameout = "time";
int outtSteps = 0;
int outtStride = 1, outyStep = 1, outxStep = 1;
float* t_out;
float out_fillVal = -9999.0;
int outDimord = 0, aggoutDimord = 1;
int *yIndxArr = NULL, *xIndxArr = NULL;
const char* tlong_name = "time";
const char* tcalendar = "standard";
char* uebVars[70] = { "Year", "Month", "Day", "dHour", "atff", "HRI", "Eacl", "Ema", "conZen", "Ta", "P", "V", "RH", "Qsi", "Qli", "Qnet",
"Us", "SWE", "tausn", "Pr", "Ps", "Alb", "QHs", "QEs", "Es", "SWIT", "QMs", "Q", "FM", "Tave", "TSURFs", "cump", "cumes",
"cumMr", "Qnet", "smelt", "refDepth", "totalRefDepth", "cf", "Taufb", "Taufd", "Qsib", "Qsid", "Taub", "Taud",
"Qsns", "Qsnc", "Qlns", "Qlnc", "Vz", "Rkinsc", "Rkinc", "Inmax", "intc", "ieff", "Ur", "Wc", "Tc", "Tac", "QHc",
"QEc", "Ec", "Qpc", "Qmc", "Mc", "FMc", "SWIGM", "SWISM", "SWIR", "errMB" };
int outvarindx = 17, aggoutvarindx = 17;
int size =1, rank = 0, irank = 0, jrank;
double intermStart_Time = 0.0, startTimeT = 0.0, TotalTime = 0.0, paramSite_Time = 0.0, inputTS_Time = 0.0, computeRun_Time = 0.0, outputWrite_Time = 0.0, dataCopy_Time = 0.0;
double TsReadTime = 0.0, TSStartTime, ComputeStartTime, ComputeTime = 0.0, OutWriteTime;
clock_t beginTime, endTime;
//beginTime = clock();
MPI::Init(argc, argv);
//how many processes
size = MPI::COMM_WORLD.Get_size(); // MPI_Comm_size(MPI_COMM_WORLD,&size);
//which rank is yours?
rank = MPI::COMM_WORLD.Get_rank(); //_Comm_rank(MPI_COMM_WORLD,&rank);
//cout << "\n rank "<< rank << " of "<< size << " processes has started\n" << endl;
MPI::Intracomm worldComm = MPI::COMM_WORLD;
MPI::Info worldInfo = MPI::INFO_NULL;
if (rank == 0)
{
//microsecond wall time: to time block of work
startTimeT = MPI::Wtime();
intermStart_Time = MPI::Wtime();
TsReadTime = 0.0;
ComputeTime = 0.0;
}
// Input Arguments
if (argc > 1)
{
//conFile = new char[sizeof(argv[0])];
strcpy(conFile, argv[1]);
}
else
{
if (rank == 0)
cout << "file not found exiting" << endl;
MPI::Finalize();
return 1;
//cin >> conFile;
}
FILE* pconFile = fopen(conFile, "rt");
fgets(headerLine, 256, pconFile);
fscanf(pconFile, "%s\n %s\n %s\n %s\n %s\n %s\n", paramFile1, sitevarFile1, inputconFile1, outputconFile1, aggoutputFile1, watershedFile1);
fscanf(pconFile, "%s %s %s\n", wsvarName1, wsycorName1, wsxcorName1);
//new vs2012 appears to have issues with passing char[256] for const char*
const char *paramFile = paramFile1, *sitevarFile = sitevarFile1, *inputconFile = inputconFile1, *outputconFile = outputconFile1, *aggoutputFile = aggoutputFile1,
*watershedFile = watershedFile1, *wsvarName = wsvarName1, *wsycorName = wsycorName1, *wsxcorName = wsxcorName1;
//read simulation related parameters including start and end datetimes, and model time step dt
fscanf(pconFile, "%d %d %d %lf\n", &ModelStartDate[0], &ModelStartDate[1], &ModelStartDate[2], &ModelStartHour);
fscanf(pconFile, "%d %d %d %lf\n", &ModelEndDate[0], &ModelEndDate[1], &ModelEndDate[2], &ModelEndHour);
fscanf(pconFile, "%lf\n %lf\n %d\n %d %d %d\n %d %d\n %d\n", &ModelDt, &ModelUTCOffset, &inpDailyorSubdaily, &outtStride, &outyStep, &outxStep, &outDimord, &aggoutDimord, &threadsPerBlock);
//close control file
fclose(pconFile);
//time units
char tunits[256];
int hhMod = (int)floor(ModelStartHour);
int mmMod = (int)(remainder(ModelStartHour, 1.0) * 60);
sprintf(tunits, "hours since %d-%d-%d %d:%d:00 UTC", ModelStartDate[0], ModelStartDate[1], ModelStartDate[2], hhMod, mmMod);
const char* tUnitsout = tunits;
//read watershed (model domain) netcdf file
retvalue = readwsncFile(watershedFile, wsvarName, wsycorName, wsxcorName, wsycorArray, wsxcorArray, wsArray, dimlen1, dimlen2, wsfillVal, worldComm, worldInfo);
//cout<<"dim1 = "<<dimlen1<<" dim2 = "<< dimlen2<<endl;
/*printf("fillvalue= %d ",wsfillVal);
for(int i=0;i<dimlen1;i++){
for(int j=0;j<dimlen2;j++)
cout<<wsArray[i][j];
cout<<"\n";
}*/
//aggregation zone info
float * wsArray1D = new float[dimlen1*dimlen2];
for (int i = 0; i < dimlen1; i++)
for (int j = 0; j < dimlen2; j++)
wsArray1D[i*dimlen2 + j] = wsArray[i][j];
//set contains unique id values
std::set<int> zValues(wsArray1D, wsArray1D + (dimlen1*dimlen2));
//cout << zValues.size() << endl;
//std::remove_if(zValues.begin(), zValues.end(), [&wsfillVal](int a){ return a == wsfillVal; });
std::set<int> fillSet;
fillSet.insert (wsfillVal);
//cout << "fill: " << fillSet.size() << " value: " << *(fillSet.begin())<<endl;
std::vector<int> zVal(zValues.size());
std::vector<int>::iterator it = std::set_difference(zValues.begin(), zValues.end(), fillSet.begin(), fillSet.end(), zVal.begin()); // exclude _FillValue
zVal.resize(it - zVal.begin()); //now zVal contains unique watershed ids excluding fill value
//cout << zVal.size()<<endl;
z_ycor = new float[zVal.size()];
z_xcor = new float[zVal.size()];
//cout << zValues.size() << endl;
nZones = zVal.size();
for (int iz = 0; iz < zVal.size(); iz++)
{
//#_12.24.14 change these with actual outlet locations coordinates
z_ycor[iz] = 0.0;
z_xcor[iz] = 0.0;
//cout << zValues[iz];
}
//read site vars
//cout<<"Reading site variable ");
readSiteVars(sitevarFile, strsvArray); //svDefaults,svFile,svVarName,svType);
/*cout<<"\n site variables read \n");
for(int i=0;i<32;i++)
cout<<"%f ",strsvArray[i].svdefValue);
cout<<"\n");*/
for (int i = 0; i < 32; i++)
if (strsvArray[i].svType == 1)
{
//cout<<"%d %s %s\n",i, strsvArray[i].svFile,strsvArray[i].svVarName);
retvalue = read2DNC(strsvArray[i].svFile, strsvArray[i].svVarName, strsvArray[i].svArrayValues, worldComm, worldInfo);
/*for(int ih=0;ih<13;ih++)
{
for(int jv=0;jv<16;jv++)
cout<<"%f ",strsvArray[i].svArrayValues[ih][jv]);
cout<<"\n");
}*/
}
paramSite_Time += (MPI::Wtime() - intermStart_Time);
intermStart_Time = MPI::Wtime();
//vector of active cells
std::vector<std::pair<int, int> > activeCells;
for (int iy = 0; iy < dimlen1; iy++)
for (int jx = 0; jx < dimlen2; jx++)
if (wsArray[iy][jx] != wsfillVal && strsvArray[16].svType != 3) //compute cell && no accumulation zone //***tbc what happens if it is accumulation zone?
activeCells.push_back(std::make_pair(iy, jx));
// create ueb model gridcell instance and copy to arrays of grid cells
uebCell objCell0 (paramFile, ModelStartDate, ModelEndDate, ModelStartHour, ModelEndHour, ModelDt, ModelUTCOffset, inpDailyorSubdaily,outtStride);
//output control
readOutputControl(outputconFile, pOut, ncOut, aggOut, npout, nncout, naggout);
//create output netcdf
outtSteps = objCell0.numTimeStep / outtStride; //save SWE every outstrid'th t-step
if (rank == 0)
cout << "number of time steps: " << " " << objCell0.numTimeStep << endl;
t_out = new float[outtSteps];
for (int it = 0; it < outtSteps; ++it)
t_out[it] = it*outtStride*ModelDt; //in hours since model start time
//output array written to netcdf files
ncoutArray = new float**[nncout];
for (int inc = 0; inc < nncout; inc++)
{
ncoutArray[inc] = new float*[activeCells.size() / size + 1];
for (int nindx = 0; nindx < (activeCells.size() / size + 1); nindx++)
ncoutArray[inc][nindx] = new float[outtSteps];
}
yIndxArr = new int[activeCells.size() / size + 1];
xIndxArr = new int[activeCells.size() / size + 1];
//aggregated output arrays # There should be better way than this
aggoutvarArray = new float**[nZones];
float * totalAgg = new float[outtSteps];
ZonesArr = new int[nZones];
for (int j = 0; j < nZones; j++)
{
ZonesArr[j] = 0;
aggoutvarArray[j] = new float*[naggout];
for (int i = 0; i < naggout; i++)
{
aggoutvarArray[j][i] = new float[outtSteps];
for (int it = 0; it < outtSteps; it++)
aggoutvarArray[j][i][it] = 0.0;
}
}
//netcdf output files
for (int icout = 0; icout < nncout; icout++)
retvalue = create3DNC_uebOutputs(ncOut[icout].outfName, (const char*)ncOut[icout].symbol, (const char*)ncOut[icout].units, tNameout, tUnitsout,
tlong_name, tcalendar, outtSteps, outDimord, t_out, &out_fillVal, watershedFile, wsvarName, wsycorName, wsxcorName, worldComm, worldInfo);
//create aggregate ouput file
retvalue = create3DNC_uebAggregatedOutputs_par(aggoutputFile, aggOut, naggout, tNameout, tUnitsout, tlong_name, tcalendar, outtSteps, aggoutDimord, t_out, &out_fillVal,
watershedFile, wsvarName, wsycorName, wsxcorName, nZones, zName, z_ycor, z_xcor, worldComm, worldInfo);
outputWrite_Time += (MPI::Wtime() - intermStart_Time);
intermStart_Time = MPI::Wtime();
//read input /forcing control file--all possible entries of input control have to be provided
objCell0.readInputForContr(inputconFile);
if (rank == 0){
//cout << " start date = " << currentModelDateTime << " end date = " << EJD;
cout << "number of uebcells = " << activeCells.size() << endl;
cout << " size of uebCell class = " << sizeof(uebCell) / ((double)(1024 * 1024)) << " MB" << endl;
}
for (int it = 0; it < 13; it++) {
if (objCell0.infrContArr[it].infType == 0) {
RegArray[it] = new float**[1];
RegArray[it][0] = new float *[1];
readTStextFile(objCell0.infrContArr[it].infFile, RegArray[it][0][0], ncTotaltimestep[it]); //tsvarArray[it][0] 3.19.15 ntimesteps[0] 12.18.14
}
}
TsReadTime += (MPI::Wtime() - intermStart_Time);
intermStart_Time = MPI::Wtime();
cout<<"proc "<<rank<<" after reading time series"<<endl;
int remLength = activeCells.size() % size;
int extraCell = 0;
if (remLength != 0) {
if (rank < remLength) // (rank/remLength) == 0
extraCell = 1;
}
cout<<"proc "<<rank<<" creating uebCell arrays"<<endl;
int numCells = (activeCells.size() / size) + extraCell;
cout<<"proc "<<rank<<" num cells = "<<numCells<<endl;
uebCell *uebCellArr = new uebCell[numCells];
cout<<"proc "<<" before setting site vars"<<endl;
//for (irank = rank; irank < activeCells.size() - remLength; irank += size)
int cellIndx = 0;
for (irank = rank; irank < activeCells.size(); irank +=size)
{
//track grid cell
yIndxArr[cellIndx] = activeCells[irank].first;
xIndxArr[cellIndx] = activeCells[irank].second;
uebCellArr[cellIndx] = objCell0;
uebCellArr[cellIndx].uebCellY = activeCells[irank].first;
uebCellArr[cellIndx].uebCellX = activeCells[irank].second;
for (int is = 0; is < 32; is++)
{
if (strsvArray[is].svType == 1)
SiteState[is] = strsvArray[is].svArrayValues[uebCellArr[cellIndx].uebCellY][uebCellArr[cellIndx].uebCellX];
else
SiteState[is] = strsvArray[is].svdefValue;
}
uebCellArr[cellIndx].setSiteVars_and_Initconds(SiteState);
cellIndx++;
}
paramSite_Time += (MPI::Wtime() - intermStart_Time);
intermStart_Time = MPI::Wtime();
int curDv, curStr;
//comment the following out when running without gpu
//memory on device checkDeviceMemory()
//cuda err check
cudaError_t err = cudaSuccess;
err = cudaGetDevice(&curDv);
cuda_checkERR(err);
cout <<"proc "<<rank<< " current device = " << curDv << endl;
cudaStream_t oStream;
//cudaSetDevice(cudIndx);
err = cudaStreamCreate(&oStream);
cuda_checkERR(err);
cout << "proc " << rank << " current stream = " << oStream << endl;
uebCell *dev_uebCellArr = NULL;
err = cudaMalloc(&dev_uebCellArr, numCells*sizeof(uebCell));
cuda_checkERR(err);
cout<<"proc "<<rank<<" device memory alloc"<<endl;
dataCopy_Time += (MPI::Wtime() - intermStart_Time);
intermStart_Time = MPI::Wtime();
double EJD = uebCellArr[0].julian(uebCellArr[0].modelEndDate[0], uebCellArr[0].modelEndDate[1], uebCellArr[0].modelEndDate[2], uebCellArr[0].modelEndHour);
double currentModelDateTime = uebCellArr[0].julian(uebCellArr[0].modelStartDate[0], uebCellArr[0].modelStartDate[1], uebCellArr[0].modelStartDate[2], uebCellArr[0].modelStartHour);
if (rank ==0)
printf(" start date = %lf end date = %lf\n", currentModelDateTime, EJD);
if (uebCellArr[0].inpDailyorSubdaily == 0) //the last 24 steps of forcing are read at once; adjust the EJD so that last time datetime is EndDate - 23*DT
EJD -= (22 * uebCellArr[0].modelDT);
else
EJD -= 22.0;
int timeOffset = 0, outOffset = 0;
while (EJD > currentModelDateTime)
{
//cudaSetDevice(cudIndx);
printf("proc %d current date = %lf\n",rank, currentModelDateTime);
objCell0.getInpForcArr(numNc, RegArray, ncTotaltimestep, worldComm, worldInfo);
cout<<"proc "<<rank<<" copied forcing arrays"<<endl;
for (irank = 0; irank < numCells; irank++)
{
uebCellArr[irank].updateInpForcArr(RegArray, ncTotaltimestep);
}
cout<<"proc "<<rank<< " forcing array updated"<<endl;
cout<<"proc "<<rank<<" Sim numTimeSteps = "<<uebCellArr[0].numSimTimeSteps<<endl;
inputTS_Time += (MPI::Wtime() - intermStart_Time);
intermStart_Time = MPI::Wtime();
//memory on device checkDeviceMemory()
//if(numNc==0){
err = cudaMemcpyAsync(dev_uebCellArr, uebCellArr, numCells*sizeof(uebCell), cudaMemcpyHostToDevice, oStream); // != cudaSuccess)
cuda_checkERR(err);
err = cudaStreamSynchronize(oStream);
cuda_checkERR(err);
//}
dataCopy_Time += (MPI::Wtime() - intermStart_Time);
intermStart_Time = MPI::Wtime();
cout << "process " << rank << " data copied to device" << endl; //cout<<err<<endl;
//memory on device checkDeviceMemory()
// Launch Kernel
blocksPerGrid = (numCells + threadsPerBlock - 1) / threadsPerBlock;
//call device run function
callUEBRun << < blocksPerGrid, threadsPerBlock, 0, oStream >> >(dev_uebCellArr, numCells);
//synchronization
err = cudaStreamSynchronize(oStream); /// cudaDeviceSynchronize();
cuda_checkERR(err);
computeRun_Time += (MPI::Wtime() - intermStart_Time);
intermStart_Time = MPI::Wtime();
cout << "process " << rank << " finished device compute tasks" << endl;
//copy data back
err = cudaMemcpyAsync(uebCellArr, dev_uebCellArr, numCells*sizeof(uebCell), cudaMemcpyDeviceToHost, oStream);// != cudaSuccess)
cuda_checkERR(err);
err = cudaStreamSynchronize(oStream);/// cudaDeviceSynchronize();
cuda_checkERR(err);
dataCopy_Time += (MPI::Wtime() - intermStart_Time);
intermStart_Time = MPI::Wtime();
cout << "process " << rank << " data copied to host" << endl; //cout << err << endl;
//end of gpu call
/*int remLength = activeCells.size() % size;
for (irank = rank; irank < activeCells.size() - remLength; irank += size)*/
/*for (int it = 0; it < outtSteps; ++it)
cout << " " << OutVarValues[70 *it + 17];*/
for (irank = 0; irank < numCells; irank++)
{
//run without gpu; comment out when running with gpu
/*uebCellArr[irank].runUEB();
computeRun_Time += (MPI::Wtime() - intermStart_Time);
intermStart_Time = MPI::Wtime();*/
//write nc outputs
for (int icout = 0; icout < nncout; icout++)
{
for (int vindx = 0; vindx < 70; vindx++)
{
if (strcmp(ncOut[icout].symbol, uebVars[vindx]) == 0)
{
outvarindx = vindx;
break;
}
}
for (int it = 0; it < uebCellArr[irank].numSimTimeSteps / outtStride; it++) // outtSteps; ++it)
ncoutArray[icout][irank][it + timeOffset] = uebCellArr[irank].OutVarValues[outvarindx][outtStride*it + outOffset]; //t_out[it]3.20.15 //use timeStiride to sample outputs if it is dense (e.g hourly data for a year may be too big to save in one nc file)
//write var values
//retvalue = WriteTSto3DNC((const char*)ncOut[icout].outfName, (const char*)ncOut[icout].symbol, outDimord, uebCellY, uebCellX, outtSteps, t_out); //, worldComm, worldInfo);
}
//#_??aggregated outputs 12.24.14
zoneid = wsArray[uebCellArr[irank].uebCellY][uebCellArr[irank].uebCellX] - 1;
ZonesArr[zoneid] += 1;
for (int iagout = 0; iagout < naggout; iagout++)
{
for (int vindx = 0; vindx < 70; vindx++)
{
if (strcmp(aggOut[iagout].symbol, uebVars[vindx]) == 0)
{
aggoutvarindx = vindx;
break;
}
}
for (int it = 0; it < uebCellArr[irank].numSimTimeSteps / outtStride; it++) //outtSteps; it++)
aggoutvarArray[zoneid][iagout][it + timeOffset] += uebCellArr[irank].OutVarValues[aggoutvarindx][outtStride*it + outOffset];
}
//point outputs
for (int ipout = 0; ipout < npout; ipout++)
{
if (uebCellArr[irank].uebCellY == pOut[ipout].ycoord && uebCellArr[irank].uebCellX == pOut[ipout].xcoord)
uebCellArr[irank].printPointOutputs((const char*)pOut[ipout].outfName);
}
//debug outputs
if (irank % (outyStep*dimlen2 + outxStep) == 0)
uebCellArr[irank].printDebugOutputs();
}
outputWrite_Time += (MPI::Wtime() - intermStart_Time);
intermStart_Time = MPI::Wtime();
//progress is calculated and written here
numgrid += uebCellArr[0].numSimTimeSteps;
if (rank == 0) /// && numgrid % (dimlen1*uebCellArr[0].numSimTimeSteps) == 0)
cout << " percent completed: " << ((float)numgrid / uebCellArr[0].numTimeStep)*100.0 << " %" << endl;
fflush(stdout);
timeOffset += (uebCellArr[0].numSimTimeSteps / outtStride);
//this takes care of the boundary between two arrays, i.e. if there are fewer than "outtSride" points at the end of the output array, they would be "padded" to the start of the next array
outOffset = 0; //edit later 5.12.15: can keep outOffset = 0 as long as numSimTimeSteps is divisible by outtStride --- outtStride - (uebCellArr[0].numSimTimeSteps % outtStride);
//cout<<"proc "<<rank<<" before currDT compute"<<endl;
//udate time
currentModelDateTime = uebCellArr[0].julian(uebCellArr[0].modelStartDate[0], uebCellArr[0].modelStartDate[1], uebCellArr[0].modelStartDate[2], uebCellArr[0].modelStartHour);
//cout<<"proc "<<rank<<" at the end of time loop"<<endl;
}
//cout << "number of active cells = " << activeCells.size() << " number cellIndx = " << cellIndx << endl;
cout << "process " << rank << " completed computation" << endl;
MPI::COMM_WORLD.Barrier();
//cellIndx++;
for (int icout = 0; icout < nncout; icout++)
{
//write var values
retvalue = WriteTSto3DNC_Block((const char*)ncOut[icout].outfName, (const char*)ncOut[icout].symbol, outDimord, yIndxArr, xIndxArr, numCells-extraCell, outtSteps, ncoutArray[icout], worldComm, worldInfo); //, worldComm, worldInfo);
}
outputWrite_Time += (MPI::Wtime() - intermStart_Time);
intermStart_Time = MPI::Wtime();
cout << "process " << rank << " wrote block outputs" << endl;
//MPI::COMM_WORLD.Barrier();
if (remLength > 0) //if there are remaining compute cells after even distribution
{
int *remRanks = new int[remLength];
for (int ir = 0; ir < remLength; ir++) // = leftBorder; ir < activeCells.size(); ir++)
remRanks[ir] = ir; // [ir - leftBorder] = ir;
MPI::Group worldGroup = MPI::COMM_WORLD.Get_group();
MPI::Group remGroup = worldGroup.Incl(remLength, remRanks);
MPI::Intracomm remComm = MPI::COMM_WORLD.Create(remGroup);
int newSize = -1; //remComm.Get_size();
int newRank = 0; //remComm.Get_rank();
if (extraCell == 1) //(rank < remLength) //only for processes in the new comm group
{
newSize = remComm.Get_size();
newRank = remComm.Get_rank();
cout << " rank " << rank << " of WorldComm has " << newRank << " of new comm group of size " << newSize << " remaining cells "<<remLength<<endl;
//write var values
for (int icout = 0; icout < nncout; icout++)
retvalue = WriteTSto3DNC((const char*)ncOut[icout].outfName, (const char*)ncOut[icout].symbol, outDimord, yIndxArr[numCells - 1], xIndxArr[numCells - 1], outtSteps, ncoutArray[icout][numCells - 1], remComm, worldInfo);
} // if(rank < remLength)
}
if(extraCell==1)
cout << "process " << rank << " wrote single outputs" << endl;
outputWrite_Time += (MPI::Wtime() - intermStart_Time);
intermStart_Time = MPI::Wtime();
//MPI::COMM_WORLD.Barrier();
//aggregation/ reduction
for (int it = 0; it < outtSteps; it++)
totalAgg[it] = 0.0;
//MPI::COMM_WORLD.Barrier();
int rankrec = 0; //receiver rank
int totalZonecells = 1, zonValue = 0;
for (int izone = 0; izone < nZones; izone++)
{
rankrec = izone*size / nZones;
//cout << "process " << rank << " before first reduce to rank: " << rankrec << endl;
zonValue = ZonesArr[izone];
MPI::COMM_WORLD.Reduce(&zonValue, &totalZonecells, 1, MPI::INT, MPI::SUM, rankrec);
//cout<<"process "<<rank<<" total zone cells "<<totalZonecells<<endl;
if (totalZonecells < 1)
totalZonecells = 1;
for (int iagout = 0; iagout < naggout; iagout++)
{
//cout << "process " << rank << " before reduce of output " << iagout << endl;
//if (rank == rankrec) MPI::COMM_WORLD.Reduce(MPI::IN_PLACE, aggoutvarArray[izone][iagout],outtSteps, MPI::FLOAT, MPI::SUM, rankrec); else
MPI::COMM_WORLD.Reduce(aggoutvarArray[izone][iagout], totalAgg, outtSteps, MPI::FLOAT, MPI::SUM, rankrec);
//cout << "process " << rank << " waiting for writing" << endl;
//#_12.28.14 aggregation operation needs defining
if (rank == rankrec)
{
if (strcmp(aggOut[iagout].aggop, "AVE") == 0)
{
for (int it = 0; it < outtSteps; it++)
totalAgg[it] = totalAgg[it] / totalZonecells; //aggoutvarArray[izone][iagout][it] / totalZonecells; //
}
/*else
{
for (int it = 0; it < outtSteps; it++)
totalAgg[it] = aggoutvarArray[izone][iagout][it]; // totalAgg[it] / totalZonecells;
}*/
//cout << "process " << rank << " before write of output " << iagout << " for zone: " << izone << endl;
retvalue = Write_uebaggTS_toNC(aggoutputFile, aggOut[iagout].symbol, aggoutDimord, izone, outtSteps, totalAgg);
//cout << "process: " << rank << " done writing output: " << iagout << " for zone " << izone << endl;
}
}
}
outputWrite_Time += (MPI::Wtime() - intermStart_Time);
intermStart_Time = MPI::Wtime();
cout << "process " << rank << " wrote aggregated outputs" << endl;
//MPI::COMM_WORLD.Barrier();
//clear stream
err = cudaStreamDestroy(oStream);
cuda_checkERR(err);
//cout<<"Process "<<rank<<" starting deallocating memory"<<endl;
//deallocate memory ====#_*_#______Needs revisiting; some of the arrays are not deleted 6.23.13
//free device memory
err = cudaFree(dev_uebCellArr); // != cudaSuccess)
cuda_checkERR(err);
cout << "process " << rank << " device memory freed" << endl;
// Free host memory
delete[] uebCellArr;
cout << "process " << rank << " uebCell arrary freed" << endl;
for (int i = 0; i < dimlen1; i++)
delete[] wsArray[i];
delete[] wsArray;
cout<<"proc "<<rank<<" freed watershed arrays"<<endl;
for (int i = 0; i < 32; i++)
{
if (strsvArray[i].svType == 1)
{
for (int j = 0; j < dimlen1; j++)
delete[] strsvArray[i].svArrayValues[j];
delete[] strsvArray[i].svArrayValues;
}
}
delete[] strsvArray;
cout<<"proc "<<rank<<" freed site vars arrays"<<endl;
//delete[] tsvarArray[kx];
/*for (int it = 0; it < 13; it++) //10-->12 6.26.14
{
delete[] tsvarArray[it];
}*/
//delete[] tsvarArray;
/*if (rank < remLength)
{
for (int it = 0; it < 13; it++)
{
if (strinpforcArray[it].infType == 1)
delete[] tcorvar[it];
}
//delete[] tcorvar;
}*/
/* for (int it = 0; it <13; it++) // 6.26.14
{
if (tsvarArrayTemp[it] != NULL)
delete3DArrayblock_Contiguous(tsvarArrayTemp[it]);
}
cout<<"process "<<rank<<"freeed tsvartemp"<<endl;
*/
for (int inc = 0; inc < nncout; inc++)
{
for (int nindx = 0; nindx < (activeCells.size() / size + 1); nindx++)
delete[] ncoutArray[inc][nindx];
delete[] ncoutArray[inc];
}
delete[] ncoutArray;
cout << "Process " << rank << " freed ncoutArray" << endl;
for (int zk = 0; zk < nZones; zk++)
{
for (int ig = 0; ig < naggout; ig++)
delete[] aggoutvarArray[zk][ig];
delete[] aggoutvarArray[zk];
}
delete[] aggoutvarArray;
cout<<"process "<<rank<<" freed aggregated output array"<<endl;
/*for(int k=0 ;k<numOut; k++)
delete[] OutVarValues[k];
delete []OutVarValues; */
//paramSite_Time += (MPI::Wtime() - intermStart_Time);
//intermStart_Time = MPI::Wtime();
cout << "Process " << rank << " finished" << endl;
fflush(stdout);
//MPI::COMM_WORLD.Barrier();
if (rank == 0)
{
//endTime = clock();
TotalTime = MPI::Wtime() - startTimeT; //
cout << "Time in seconds" << endl;
cout << "Reading param site state input control: " << paramSite_Time << endl;
cout << "Reading input TS txt arrays: " << TsReadTime << endl;
cout << "Reading input total TS arrays: " << inputTS_Time << endl;
cout << "Model simulation run time: " << computeRun_Time << endl;
cout << "Host<-->Device data copy time: " << dataCopy_Time << endl;
cout << "Outptus write time: " << outputWrite_Time << endl;
cout << "Total time of including overhead : " << TotalTime << endl;
cout << "Done! return value: " << retvalue << endl;
//fflush(stdout);
}
//cout << "Done! return value: " << retvalue << endl;
//fflush(stdout);
exitlab:
MPI::Finalize();
//getchar();
return 0;
}