
@dynamic_cast

Practical Software
Engineering

ADC 2022

https://twitter.com/dynamic_cast

@dynamic_cast

Harriet Drury @drury_harriet

Rachel Locke @Madammodular

Anna Wszeborowska @aniawsz

https://twitter.com/dynamic_cast
https://twitter.com/drury_harriet
https://twitter.com/Madammodular
https://twitter.com/aniawsz

Presentation slides

https://github.com/dynamic-cast/aquila-workshop/wiki

https://github.com/dynamic-cast/aquila-workshop/wiki

Stages of working with existing code

BUILD CONTRIBUTE DEPLOY

BUILD

From .cpp to .exe……. What does it mean to build?

To build a C++ program means to compile source code from one or more files and then link those
files into an executable file, a dynamic-load library or a static library.

The C++ Compilation Model

Preprocessing

The preprocessing stage takes our source files (.cpp, .h) and deals with the
#includes and #defines, user-defined macros, etc.

Compilation

The expanded source code is compiled into assembly code to output and
assembler file

Assemble

Converts the compiled assembly code into object files

Source (https://www.geeksforgeeks.org/difference-between-source-code-and-object-code/)

https://www.geeksforgeeks.org/difference-between-source-code-and-object-code/

Link

This object code file is linked together with
the object code files for any library
functions to produce an executable file

Source:
(https://subscription.packtpub.com/book/programming/9781789801491/1/ch01lvl1sec03/the-c-compilation-model)

https://subscription.packtpub.com/book/programming/9781789801491/1/ch01lvl1sec03/the-c-compilation-model

Build systems - CMake

We use build systems to control builds across multiple platforms, it automates the compiling process.

CMake is a generator of build systems. It generates makefiles, this includes instructions on how to
build your code. It can be used to target multi platform build systems such as:

• Visual Studio
• Xcode
• KDEvelop

CMake

CMake Benefits:

•Has a scripting language that can be easy to learn and integrate into your
workflow (CMakeLists.txt)

•Good documentation

•Widespread usage

Building an open source project with CMake

Software/prerequisites to have:

•Git
•CMake
• IDE of choosing (Visual Studio, XCode, etc)

Install these to continue with the Aquila build!

Nice (Free!) software to consider:

•Sourcetree (Git GUI Client)

Git

https://git-scm.com/

A free, open source, versioning control system

On Windows ,once installed, you’ll see the git bash, gui and cmd applications.
We’ll be using the bash.

https://git-scm.com/

Aquila

Aquila is an open source and cross-platform DSP (Digital Signal Processing)
library written in C++.

https://aquila-dsp.org/

https://aquila-dsp.org/

Clone the repository

https://github.com/dynamic-cast/aquila-workshop

1. Create a new folder on your computer and change your directory to point to it

2. Run: git clone https://github.com/dynamic-cast/aquila-workshop aquila-src

https://github.com/dynamic-cast/aquila-workshop
https://github.com/dynamic-cast/aquila-workshop

CMake Build - command line on Unix platforms

mkdir build; cd build

cmake .. -DCMAKE_BUILD_TYPE=Debug

CMake Build - VS Code

C++ Extension Pack installed

Open the folder where you checked out the repository

CMake Build

We’re using the CMake GUI to keep things easy! Windows users, remember to run as
administrator. This allows us to write files to locations needing admin access.

CMake Build

We’ll use the cmake GUI for this.

Point Cmake to the source code location

Create a new folder for the build location

Your folder Hierarchy should look like:

workshop-dir/
|_build
|_aquila-src

Click configure in the bottom left

CMake Build

You’ll need to specify your generator for your project

CMake Build

You’ll see this:

Settings can be changed here,
including install preferences

Click generate

Build system

You’ll see the build folder has been populated with items. We now open our IDE for the
next step.

Note:- Windows users! Open Visual Studio as an administrator:

Build system

Once we’ve targeted the project, you can open it
with your IDE and perform a debug build.

Right click on the ALL_BUILD and build a solution,
Right click on INSTALL and build

Successful build

Once built, navigate to your chosen install
location. This was set in CMake.

You’ll find:

• Lib (for library files)
• Include (Containing header files)

We can now move to understand this project further

CONTRIBUTE

Contribute

READ WRITE DELETE

Deleting code

https://github.com/huggingface/diffusers/pull/218/commits/
9583ab730e4bcb948c920a15832f3f7027b76d78

https://github.com/huggingface/diffusers/pull/218/commits/9583ab730e4bcb948c920a15832f3f7027b76d78
https://github.com/huggingface/diffusers/pull/218/commits/9583ab730e4bcb948c920a15832f3f7027b76d78

Contribute

almost 60% of time*

* “on average developers spend ~58 percent of their time on program comprehension activities”;
Measuring Program Comprehension: A Large-Scale Field Study with Professionals (Xia et al., 2017)

WRITE DELETEREAD
TO UNDERSTAND

Contributing
starts with

comprehending

WRITE DELETEREAD
TO UNDERSTAND

The ability to
read code is a
prerequisite to
contributing

code

Contributing
starts with

comprehending

Contribute

WRITE DELETEREAD
TO UNDERSTAND

The ability to
read code is a
prerequisite to
contributing

code

Contributing
starts with

comprehending

Contrary to
common advice:

code more in order
to get better at
programming

Contribute

WRITE DELETEREAD
TO UNDERSTAND

The ability to
read code is a
prerequisite to
contributing

code

Contributing
starts with

comprehending

Contrary to
common advice:

code more in order
to get better at
programming

* “Code can be read in different dimensions: structure, domain, concepts, context, and collaboration.”
Code Reading in Practice, Felienne Hermans

It gets easier as
we get more

familiar with the
concepts* used
in the codebase

Contribute

WRITE DELETEREAD
TO UNDERSTAND

The ability to
read code is a
prerequisite to
contributing

code

It gets easier as
we get more

familiar with the
concepts* used
in the codebase

Contributing
starts with

comprehending

Contrary to
common advice:

code more in order
to get better at
programming

Practice
reading and
reasoning

about code
often

* “Code can be read in different dimensions: structure, domain, concepts, context, and collaboration.”
Code Reading in Practice, Felienne Hermans

Contribute

Deliberate reading

DEPTH FIRST BREADTH FIRST

Deliberate reading

DEPTH FIRST BREADTH FIRST

Narrowed
focus

Deliberate reading

DEPTH FIRST BREADTH FIRST

Narrowed
focus

No need to
understand
the whole

system

Deliberate reading

DEPTH FIRST BREADTH FIRST

Narrowed
focus

Focus on
higher-level
components

No need to
understand
the whole

system

DEPTH FIRST BREADTH FIRST

Narrowed
focus

Focus on
higher-level
components

No need to
understand
the whole

system

No need to
understand all

the details

Deliberate reading

DEPTH FIRST BREADTH FIRST

Narrowed
focus

Focus on
higher-level
components

No need to
understand all

the details

No need to
understand
the whole

system

Understanding
what causes
a particular

problem

Deliberate reading

DEPTH FIRST BREADTH FIRST

Narrowed
focus

Focus on
higher-level
components

No need to
understand all

the details

No need to
understand
the whole

system

Understanding
what causes
a particular

problem

Trying to integrate
a new component
with the existing

system

Deliberate reading

Reading code in preparation for the task

FIX INTEGRATE MODIFY

Debug an existing problem

https://github.com/zsiciarz/aquila/issues/55

1. check out the branch debugging

2. build the workshop target

pass tone.wav from the workshop folder as an argument

3. run the workshop example

https://github.com/zsiciarz/aquila/issues/55

Debug an existing problem

{
 "version": "0.2.0",
 "configurations": [
 {
 "name": "(msvc) Launch",
 "request": "launch",
 "type": "cppvsdbg",
 "program": "${command:cmake.launchTargetPath}",
 "args": ["examples/workshop/tone.wav"],
 "stopAtEntry": false,
 "cwd": "${workspaceFolder}",
 "environment": [],
 "externalConsole": false,
 },
 {
 "name": "(lldb) Launch",
 "type": "cppdbg",
 "request": "launch",
 "program": "${command:cmake.launchTargetPath}",
 "args": ["examples/workshop/tone.wav"],
 "stopAtEntry": false,
 "cwd": "${workspaceFolder}",
 "environment": [],
 "externalConsole": false,
 "MIMode": "lldb",
 },
]
}

https://github.com/zsiciarz/aquila/issues/55

1. Reproduce the problem

2. Find meaningful places to put breakpoint in

3. Have a conversation with the debugger / other tools

Debug an existing problem

Don’t try to
keep everything
in the working

memory

Use tools that
support distributed

cognition
(eg. pen and

paper); they extend
the working memory

What is there to
hold on to?

Higher level:
names, concepts,

structure, git
history

Lower level:
values, relations

Don’t read the
code linearly,
follow the call

stack

Aim to
understand the

relations
between values

Debug an existing problem

Testing

UNIT INTEGRATION ACCEPTANCE

Example types of tests

Testing frameworks

GoogleTest (https://github.com/google/googletest)

Catch2 (https://github.com/catchorg/Catch2)

UnitTest++ (https://github.com/unittest-cpp/unittest-cpp)

https://github.com/google/googletest
https://github.com/catchorg/Catch2
https://github.com/unittest-cpp/unittest-cpp

UnitTest++

https://github.com/unittest-cpp/unittest-cpp/wiki/Macro-and-Parameter-Reference

Testing

Setup

Action

Check

Modifying

Move the responsibility to assure the correct

data length from the caller to Wave Source

Modifying

Keep your focus on what
matters at all times; ask

yourself often: what am I
trying to do? why am I

looking here / what am I
looking for?

Move the responsibility to assure the correct

data length from the caller to Wave Source

Test Driven Development

Red - introduce a failing test

Green - add necessary changes to make the test pass

Refactor - clean up your solution

Test Driven Development

1. Find a group of matching tests

2. State your end goal in a test

3. Let the process guide you to the solution and end implementation

Test Driven Development

•Detailed tests serving as documentation and providing entry points
to the codebase

•Simpler and cleaner implementation (no premature abstractions,
only necessary code) and interfaces

Potential benefits

Code design

MAINTAINABILITY PERFORMANCE

What are your (or the project’s) priorities?

Code design

MAINTAINABILITY PERFORMANCE

What are your (or the project’s) priorities?

Long-lived
projects, new
contributors
joining often

Critical real time
applications,

limited hardware
resources

Code design

MAINTAINABILITY PERFORMANCE

READABILITY SCALABILITY
EXTENSIBILITY

COHERENCE

Meaningful
names

Simplicity
over

quirkiness

“Self-
documenting

code”

Reducing
cognitive

load

Complex or
unusual solutions

overload your
short-term
memory

Code design

MAINTAINABILITY PERFORMANCE

READABILITY SCALABILITY
EXTENSIBILITY

COHERENCE

Meaningful
names

Simplicity
over

quirkiness

“Self-
documenting

code”

Reducing
cognitive

load

Complex or
unusual solutions

overload your
short-term
memory

Ease of
adding /
removing

code

Loosely /
tightly

coupled
code

Can accept
different

size of data

Code design

MAINTAINABILITY PERFORMANCE

READABILITY SCALABILITY
EXTENSIBILITY

COHERENCE

Meaningful
names

Simplicity
over

quirkiness

“Self-
documenting

code”

Reducing
cognitive

load

Complex or
unusual solutions

overload your
short-term
memory

Ease of
adding /
removing

code

Loosely /
tightly

coupled
code

Can accept
different

size of data

Coherent
practices

Coherent
code style

Code design

MAINTAINABILITY PERFORMANCE

READABILITY SCALABILITY
EXTENSIBILITY

COHERENCE

If you can't avoid
cryptic code,

prioritize
documentation

Try to hide the
complexity

Meaningful
names

Simplicity
over

quirkiness

“Self-
documenting

code”

Reducing
cognitive

load

Complex or
unusual solutions

overload your
short-term
memory

Ease of
adding /
removing

code

Loosely /
tightly

coupled
code

Can accept
different

size of data

Coherent
practices

Coherent
code style

DEPLOY

Deployment

1. Commit your changes on a branch

2. Create a PR

3. Get a code review and merge your changes!

Thank you

