-
Notifications
You must be signed in to change notification settings - Fork 0
/
hw_resources_provider_node.py
99 lines (84 loc) · 3.06 KB
/
hw_resources_provider_node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# Copyright 2023 SustainML Consortium
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""SustainML HW Resources Provider Node Implementation."""
from sustainml_py.nodes.HardwareResourcesNode import HardwareResourcesNode
import onnxruntime
import signal
import threading
import time
import torch
import typer
import upmem_llm_framework as upmem_layers
app = typer.Typer(callback=upmem_layers.initialize_profiling_options)
# Whether to go on spinning or interrupt
running = False
# ONNX Model-based testing class
class ONNXModel(torch.nn.Module):
def __init__(self, onnx_model_path):
super(ONNXModel, self).__init__()
self.onnx_session = onnxruntime.InferenceSession(onnx_model_path)
def forward(self, inputs):
# TODO - Make something intelligent to determine the forward method
return torch.nn.functional.softmax(inputs, dim=0)
# Signal handler
def signal_handler(sig, frame):
print("\nExiting")
HardwareResourcesNode.terminate()
global running
running = False
# User Callback implementation
# Inputs: ml_model, app_requirements, hw_constraints
# Outputs: node_status, hw
def task_callback(ml_model, app_requirements, hw_constraints, node_status, hw):
upmem_layers.profiler_init()
# Instantiate the ONNX predictor model
onnx_model = ONNXModel(ml_model.model_path())
my_tensor = torch.rand(100)
layer_mapping = {
"input_layernorm": "PIM-AI-1chip",
"q_proj": "PIM-AI-1chip",
"k_proj": "PIM-AI-1chip",
"rotary_emb": "PIM-AI-1chip",
"v_proj": "PIM-AI-1chip",
"o_proj": "PIM-AI-1chip",
"output_layernorm": "PIM-AI-1chip",
"gate_proj": "PIM-AI-1chip",
"up_proj": "PIM-AI-1chip",
"down_proj": "PIM-AI-1chip",
"norm": "PIM-AI-1chip",
"lm_head": "PIM-AI-1chip",
}
upmem_layers.profiler_start(layer_mapping)
onnx_model.forward(my_tensor)
upmem_layers.profiler_end()
hw.hw_description("PIM-AI-1chip")
hw.power_consumption(upmem_layers.profiler_get_power_consumption())
hw.latency(upmem_layers.profiler_get_latency())
# Main workflow routine
def run():
node = HardwareResourcesNode(callback=task_callback)
global running
running = True
node.spin()
# Call main in program execution
if __name__ == '__main__':
signal.signal(signal.SIGINT, signal_handler)
"""Python does not process signals async if
the main thread is blocked (spin()) so, tun
user work flow in another thread """
runner = threading.Thread(target=run)
runner.start()
while running:
time.sleep(1)
runner.join()