forked from andyweizhao/capsule_text_classification
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreuters_process.py
181 lines (151 loc) · 5.91 KB
/
reuters_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import numpy as np
import h5py
import re
import operator
import sys
reload(sys)
sys.setdefaultencoding('utf8')
from nltk import word_tokenize
from nltk.corpus import reuters
from nltk.corpus import stopwords
cachedStopWords = stopwords.words("english")
def load_word_vector(fname, vocab):
model = {}
with open(fname) as fin:
for line_no, line in enumerate(fin):
try:
parts = line.strip().split(' ')
word, weights = parts[0], parts[1:]
if word in vocab:
model[word] = np.array(weights,dtype=np.float32)
except:
pass
return model
def load_bin_vec(fname, vocab):
"""
Loads 300x1 word vecs from Google (Mikolov) word2vec
"""
word_vecs = {}
with open(fname, "rb") as f:
header = f.readline()
vocab_size, layer1_size = map(int, header.split())
binary_len = np.dtype('float32').itemsize * layer1_size
for line in xrange(vocab_size):
word = []
while True:
ch = f.read(1)
if ch == ' ':
word = ''.join(word)
break
if ch != '\n':
word.append(ch)
if word in vocab:
word_vecs[word] = np.frombuffer(f.read(binary_len), dtype='float32')
else:
f.read(binary_len)
return word_vecs
def line_to_words(line):
words = map(lambda word: word.lower(), word_tokenize(line))
tokens = words
p = re.compile('[a-zA-Z]+')
return list(filter(lambda token: p.match(token) and len(token) >= 3, tokens))
def get_vocab(dataset):
max_sent_len = 0
word_to_idx = {}
idx = 1
for line in dataset:
words = line_to_words(line)
max_sent_len = max(max_sent_len, len(words))
for word in words:
if not word in word_to_idx:
word_to_idx[word] = idx
idx += 1
return max_sent_len, word_to_idx
#dataset = 'reuters_multilabel_all'
dataset = 'reuters_multilabel_new'
def load_data(padding=0, sent_len=300, w2i=None):
"""
threshold = 0 all labels in test data
threshold = 1 only multilabels in test data
"""
threshold = 1
train_docs, train_cats, test_docs, test_cats = [], [], [], []
popular_topics = set(['earn','acq','money-fx','grain','crude','trade','interest','ship','wheat','corn'])
for doc_id in reuters.fileids():
if doc_id.startswith("train"):
if set(reuters.categories(doc_id)).issubset(popular_topics):
train_docs.append(reuters.raw(doc_id))
train_cats.append([cat for cat in reuters.categories(doc_id)])
# train_cats.append(
# [cats.index(cat) for cat in reuters.categories(doc_id)])
else:
if set(reuters.categories(doc_id)).issubset(popular_topics):
test_docs.append(reuters.raw(doc_id))
test_cats.append([cat for cat in reuters.categories(doc_id)])
dataset = train_docs + test_docs
max_sent_len, word_to_idx = get_vocab(dataset)
if sent_len > 0:
max_sent_len = sent_len
if w2i is not None:
word_to_idx = w2i
train, train_label, test, test_label = [], [], [], []
for i, line in enumerate(train_docs):
words = line_to_words(line)
y = train_cats[i]
if len(y) > 1: # The examples which contain at least 1 label would be assigned to test data.
test_docs.append(line)
test_cats.append(y)
continue
y = y[0]
sent = [word_to_idx[word] for word in words if word in word_to_idx]
if len(sent) > max_sent_len:
sent = sent[:max_sent_len]
else:
sent.extend([0] * (max_sent_len + padding - len(sent)))
train.append(sent)
train_label.append(y)
single_label = ['-1'] + list(set(train_label))
num_classes = len(single_label)
for i, l in enumerate(train_label):
train_label[i] = single_label.index(l)
for i, line in enumerate(test_docs):
words = line_to_words(line)
y = test_cats[i]
sent = [word_to_idx[word] for word in words if word in word_to_idx]
if len(sent) > max_sent_len:
sent = sent[:max_sent_len]
else:
sent.extend([0] * (max_sent_len + padding - len(sent)))
if len(y) > threshold and set(y).issubset(single_label):
test.append(sent)
one_hot_y = np.zeros([num_classes],dtype=np.int32)
for yi in y:
one_hot_y[single_label.index(yi)]=1
test_label.append(one_hot_y)
return single_label, word_to_idx, np.array(train), np.array(train_label), np.array(test), np.array(test_label)
single_label, word_to_idx, train, train_label, test, test_label = load_data(padding=0, sent_len=300, w2i=None)
with open(dataset + '_word_mapping.txt', 'w+') as embeddings_f:
embeddings_f.write("*PADDING* 0\n")
for word, idx in sorted(word_to_idx.items(), key=operator.itemgetter(1)):
embeddings_f.write("%s %d\n" % (word, idx))
w2v_path = 'GoogleNews-vectors-negative300.bin'
#glove_path = 'glove.6B/glove.6B.300d.txt'
w2v = load_bin_vec(w2v_path, word_to_idx)
V = len(word_to_idx) + 1
print ('Vocab size:', V)
def compute_embed(V,w2v):
np.random.seed(1)
embed = np.random.uniform(-0.25, 0.25, (V, len(w2v.values()[0])))
for word, vec in w2v.items():
embed[word_to_idx[word]] = vec # padding word is positioned at index 0
return embed
embed_w2v = compute_embed(V, w2v)
#embed_glove = compute_embed(V, glove)
print ('train size:', train.shape)
filename = dataset + '.hdf5'
with h5py.File(filename, "w") as f:
f["w2v"] = np.array(embed_w2v)
f['train'] = train
f['train_label'] = train_label
f['test'] = test
f['test_label'] = test_label