-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathops.py
46 lines (35 loc) · 1.97 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# TensorFlow version of NIPS2016 soundnet
import tensorflow as tf
def conv2d(prev_layer, in_ch, out_ch, k_h=1, k_w=1, d_h=1, d_w=1, p_h=0, p_w=0, pad='VALID', name_scope='conv'):
with tf.variable_scope(name_scope) as scope:
# h x w x input_channel x output_channel
w_conv = tf.get_variable('weights', [k_h, k_w, in_ch, out_ch],
initializer=tf.truncated_normal_initializer(0.0, stddev=0.01))
b_conv = tf.get_variable('biases', [out_ch],
initializer=tf.constant_initializer(0.0))
padded_input = tf.pad(prev_layer, [[0, 0], [p_h, p_h], [p_w, p_w], [0, 0]], "CONSTANT") if pad == 'VALID' \
else prev_layer
output = tf.nn.conv2d(padded_input, w_conv,
[1, d_h, d_w, 1], padding=pad, name='z') + b_conv
return output
def batch_norm(prev_layer, out_ch, eps, name_scope='conv'):
with tf.variable_scope(name_scope) as scope:
#mu_conv, var_conv = tf.nn.moments(prev_layer, [0, 1, 2], keep_dims=False)
mu_conv = tf.get_variable('mean', [out_ch],
initializer=tf.constant_initializer(0))
var_conv = tf.get_variable('var', [out_ch],
initializer=tf.constant_initializer(1))
gamma_conv = tf.get_variable('gamma', [out_ch],
initializer=tf.constant_initializer(1))
beta_conv = tf.get_variable('beta', [out_ch],
initializer=tf.constant_initializer(0))
output = tf.nn.batch_normalization(prev_layer, mu_conv,
var_conv, beta_conv, gamma_conv, eps, name='batch_norm')
return output
def relu(prev_layer, name_scope='conv'):
with tf.variable_scope(name_scope) as scope:
return tf.nn.relu(prev_layer, name='a')
def maxpool(prev_layer, k_h=1, k_w=1, d_h=1, d_w=1, name_scope='conv'):
with tf.variable_scope(name_scope) as scope:
return tf.nn.max_pool(prev_layer,
[1, k_h, k_w, 1], [1, d_h, d_w, 1], padding='VALID', name='maxpool')