This repository has been archived by the owner on Nov 16, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
npbc_core.py
782 lines (584 loc) · 26 KB
/
npbc_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
"""
provides the core functionality
- sets up and communicates with the DB
- adds, deletes, edits, or retrieves data from the DB (such as undelivered strings, paper data, logs)
- performs the main calculations
- handles validation and parsing of many values (such as undelivered strings)
"""
from calendar import day_name as weekday_names_iterable
from calendar import monthcalendar, monthrange
from collections import namedtuple
from collections.abc import Generator
from datetime import date, datetime, timedelta
from os import environ
from pathlib import Path
from sqlite3 import Connection, connect
import numpy
import numpy.typing
import npbc_exceptions
import npbc_regex
## paths for the folder containing schema and database files
# during normal use, the DB will be in ~/.npbc (where ~ is the user's home directory) and the schema will be bundled with the executable
# during development, the DB and schema will both be in the folder provided by the environment (likely "data")
DATABASE_VARIABLE = environ.get("NPBC_DATABASE_DIR")
DATABASE_DIR = Path(DATABASE_VARIABLE) if DATABASE_VARIABLE is not None else Path.home() / ".npbc"
DATABASE_PATH = DATABASE_DIR / "npbc.sqlite"
SCHEMA_DIR = Path(DATABASE_VARIABLE) if DATABASE_VARIABLE is not None else Path(__file__).parent
SCHEMA_PATH = SCHEMA_DIR / "schema.sql"
## constant for names of weekdays
WEEKDAY_NAMES = tuple(weekday_names_iterable)
# create tuple classes for return data
Papers = namedtuple("Papers", ["paper_id", "name", "day_id", "delivered", "cost"])
UndeliveredStrings = namedtuple("UndeliveredStrings", ["string_id", "paper_id", "year", "month", "string"])
def create_and_setup_DB() -> Path:
"""ensure DB exists and it's set up with the schema"""
DATABASE_DIR.mkdir(parents=True, exist_ok=True)
DATABASE_PATH.touch(exist_ok=True)
with connect(DATABASE_PATH) as connection:
connection.executescript(SCHEMA_PATH.read_text())
connection.close()
return DATABASE_PATH
def get_number_of_each_weekday(month: int, year: int) -> Generator[int, None, None]:
"""generate a list of number of times each weekday occurs in a given month (return a generator)
- the list will be in the same order as WEEKDAY_NAMES (so the first day should be Monday)"""
# get the calendar for the month
main_calendar = monthcalendar(year, month)
# get the number of weeks in that month from the calendar
number_of_weeks = len(main_calendar)
# iterate over each possible weekday
for weekday_index in range(len(WEEKDAY_NAMES)):
# assume that the weekday occurs once per week in the month
number_of_weekday: int = number_of_weeks
# if the first week doesn't have the weekday, decrement its count
if main_calendar[0][weekday_index] == 0:
number_of_weekday -= 1
# if the last week doesn't have the weekday, decrement its count
if main_calendar[-1][weekday_index] == 0:
number_of_weekday -= 1
yield number_of_weekday
def validate_undelivered_string(*strings: str) -> None:
"""validate a string that specifies when a given paper was not delivered
- first check to see that it meets the comma-separated requirements
- then check against each of the other acceptable patterns in the regex dictionary"""
# check that the string matches one of the acceptable patterns
for string in strings:
if string and not any (
pattern.match(string) for pattern in (
npbc_regex.NUMBER_MATCH_REGEX,
npbc_regex.RANGE_MATCH_REGEX,
npbc_regex.DAYS_MATCH_REGEX,
npbc_regex.N_DAY_MATCH_REGEX,
npbc_regex.ALL_MATCH_REGEX
)
):
raise npbc_exceptions.InvalidUndeliveredString(f'{string} is not a valid undelivered string.')
# if we get here, all strings passed the regex check
return
def extract_number(string: str, month: int, year: int) -> date:
"""if the date is simply a number, it's a single day. so we just identify that date"""
day = int(string)
# if the date is valid for the given month
if 0 < day <= monthrange(year, month)[1]:
return date(year, month, day)
# if we reach here, the check failed and it's not a valid date
raise npbc_exceptions.InvalidUndeliveredString(f'{string} is not a valid date for {datetime(year=year, month=month, day=1):%B %Y}.')
def extract_range(string: str, month: int, year: int) -> Generator[date, None, None]:
"""if the date is a range of numbers, it's a range of days. we identify all the dates in that range, bounds inclusive"""
start, end = map(int, npbc_regex.HYPHEN_SPLIT_REGEX.split(string))
# if the range is valid for the given month
if 0 < start <= end <= monthrange(year, month)[1]:
for day in range(start, end + 1):
yield date(year, month, day)
else:
# if we reach here, the check failed and the month doesn't have that many days
raise npbc_exceptions.InvalidUndeliveredString(f'{datetime(year=year, month=month, day=1):%B %Y} does not have days between {start} and {end}.')
def extract_weekday(string: str, month: int, year: int) -> Generator[date, None, None]:
"""if the date is the plural of a weekday name, we identify all dates in that month which are the given weekday"""
weekday = WEEKDAY_NAMES.index(string.capitalize().rstrip('s'))
for day in range(1, monthrange(year, month)[1] + 1):
if date(year, month, day).weekday() == weekday:
yield date(year, month, day)
def extract_nth_weekday(string: str, month: int, year: int) -> date:
"""if the date is a number and a weekday name (singular), we identify the date that is the nth occurrence of the given weekday in the month"""
n, weekday_name = npbc_regex.HYPHEN_SPLIT_REGEX.split(string)
n = int(n)
# if the day is valid for the given month
if 0 < n <= list(get_number_of_each_weekday(month, year))[WEEKDAY_NAMES.index(weekday_name.capitalize())]:
# record the "day_id" corresponding to the given weekday name
weekday = WEEKDAY_NAMES.index(weekday_name.capitalize())
# store all dates when the given weekday occurs in the given month
valid_dates = [
date(year, month, day)
for day in range(1, monthrange(year, month)[1] + 1)
if date(year, month, day).weekday() == weekday
]
# return the date that is the nth occurrence of the given weekday in the month
return valid_dates[n - 1]
# if we reach here, the check failed and the weekday does not occur n times in the month
raise npbc_exceptions.InvalidUndeliveredString(f'{datetime(year=year, month=month, day=1):%B %Y} does not have {n} {weekday_name}s.')
def extract_all(month: int, year: int) -> Generator[date, None, None]:
"""if the text is "all", we identify all the dates in the month"""
for day in range(1, monthrange(year, month)[1] + 1):
yield date(year, month, day)
def parse_undelivered_string(month: int, year: int, string: str) -> set[date]:
"""parse a section of the strings
- each section is a string that specifies a set of dates
- this function will return a set of dates that uniquely identifies each date mentioned across the string"""
# initialize the set of dates
dates = set()
# check for each of the patterns
if npbc_regex.NUMBER_MATCH_REGEX.match(string):
number_date = extract_number(string, month, year)
if number_date:
dates.add(number_date)
elif npbc_regex.RANGE_MATCH_REGEX.match(string):
dates.update(extract_range(string, month, year))
elif npbc_regex.DAYS_MATCH_REGEX.match(string):
dates.update(extract_weekday(string, month, year))
elif npbc_regex.N_DAY_MATCH_REGEX.match(string):
n_day_date = extract_nth_weekday(string, month, year)
if n_day_date:
dates.add(n_day_date)
elif npbc_regex.ALL_MATCH_REGEX.match(string):
dates.update(extract_all(month, year))
else:
raise npbc_exceptions.InvalidUndeliveredString(f'{string} is not a valid undelivered string.')
return dates
def parse_undelivered_strings(month: int, year: int, *strings: str) -> set[date]:
"""parse a string that specifies when a given paper was not delivered
- each section states some set of dates
- this function will return a set of dates that uniquely identifies each date mentioned across all the strings"""
# initialize the set of dates
dates = set()
# check for each of the patterns
for string in strings:
if string:
try:
dates.update(parse_undelivered_string(month, year, string))
except npbc_exceptions.InvalidUndeliveredString as e:
print(
f"""Congratulations! You broke the program!
You managed to write a string that the program considers valid, but isn't actually.
Please report it to the developer.
\nThe string you wrote was: {string}
This data has not been counted.\n
Exact error message: {e}"""
)
return dates
def get_cost_and_delivery_data(paper_id: int, connection: Connection) -> tuple[numpy.typing.NDArray[numpy.floating], numpy.typing.NDArray[numpy.int8]]:
"""get the cost and delivery data for a given paper from the DB"""
delivered_query = """
SELECT delivered FROM cost_and_delivery_data
WHERE paper_id = ?
ORDER BY day_id;
"""
cost_query = """
SELECT cost FROM cost_and_delivery_data
WHERE paper_id = ?
ORDER BY day_id;
"""
delivery_data = numpy.array(connection.execute(delivered_query, (paper_id,)).fetchall())
cost_data = numpy.array(connection.execute(cost_query, (paper_id,)).fetchall())
return cost_data.reshape(len(cost_data)), delivery_data.reshape(len(delivery_data))
def calculate_cost_of_one_paper(
number_of_each_weekday: list[int],
undelivered_dates: set[date],
cost_data: numpy.typing.NDArray[numpy.floating],
delivery_data: numpy.typing.NDArray[numpy.int8]
) -> float:
"""calculate the cost of one paper for the full month
- any dates when it was not delivered will be removed"""
# initialize counters corresponding to each weekday when the paper was not delivered
number_of_days_per_weekday_not_received = numpy.zeros(len(number_of_each_weekday), dtype=numpy.int8)
# for each date that the paper was not delivered, we increment the counter for the corresponding weekday
for day in undelivered_dates:
number_of_days_per_weekday_not_received[day.weekday()] += 1
return float(numpy.sum(
delivery_data * cost_data * (number_of_each_weekday - number_of_days_per_weekday_not_received)
))
def calculate_cost_of_all_papers(connection: Connection, undelivered_strings: dict[int, list[str]], month: int, year: int) -> tuple[
dict[int, float],
float,
dict[int, set[date]]
]:
"""calculate the cost of all papers for the full month
- return data about the cost of each paper, the total cost, and dates when each paper was not delivered"""
NUMBER_OF_EACH_WEEKDAY = list(get_number_of_each_weekday(month, year))
cost_and_delivery_data = {}
# get the IDs of papers that exist
papers = connection.execute("SELECT paper_id FROM papers;").fetchall()
# get the data about cost and delivery for each paper
cost_and_delivery_data = [
get_cost_and_delivery_data(paper_id, connection)
for paper_id, in papers # type: ignore
]
# initialize a "blank" dictionary that will eventually contain any dates when a paper was not delivered
undelivered_dates: dict[int, set[date]] = {
int(paper_id): set()
for paper_id, in papers # type: ignore
}
# calculate the undelivered dates for each paper
for paper_id, strings in undelivered_strings.items():
undelivered_dates[paper_id].update(
parse_undelivered_strings(month, year, *strings)
)
# calculate the cost of each paper
costs = {
paper_id: calculate_cost_of_one_paper(
NUMBER_OF_EACH_WEEKDAY,
undelivered_dates[paper_id],
*cost_and_delivery_data[index]
)
for index, (paper_id,) in enumerate(papers) # type: ignore
}
# calculate the total cost of all papers
total = sum(costs.values())
return costs, total, undelivered_dates
def save_results(
connection: Connection,
costs: dict[int, float],
undelivered_dates: dict[int, set[date]],
month: int,
year: int,
custom_timestamp: datetime | None = None
) -> None:
"""save the results of undelivered dates to the DB
- save the dates any paper was not delivered
- save the final cost of each paper"""
timestamp = (custom_timestamp or datetime.now()).strftime(r'%d/%m/%Y %I:%M:%S %p')
# create log entries for each paper
log_ids = {
paper_id: connection.execute(
"""
INSERT INTO logs (paper_id, month, year, timestamp)
VALUES (?, ?, ?, ?)
RETURNING logs.log_id;
""",
(paper_id, month, year, timestamp)
).fetchone()[0]
for paper_id in costs.keys()
}
# create cost entries for each paper
for paper_id, log_id in log_ids.items():
connection.execute(
"""
INSERT INTO cost_logs (log_id, cost)
VALUES (?, ?);
""",
(log_id, costs[paper_id])
)
# create undelivered date entries for each paper
for paper_id, dates in undelivered_dates.items():
for day in dates:
connection.execute(
"""
INSERT INTO undelivered_dates_logs (log_id, date_not_delivered)
VALUES (?, ?);
""",
(log_ids[paper_id], day.strftime("%Y-%m-%d"))
)
return
def format_output(connection: Connection, costs: dict[int, float], total: float, month: int, year: int) -> Generator[str, None, None]:
"""format the output of calculating the cost of all papers"""
# output the name of the month for which the total cost was calculated
yield f"For {date(year=year, month=month, day=1).strftime(r'%B %Y')},\n"
# output the total cost of all papers
yield f"*TOTAL*: {total:.2f}"
# output the cost of each paper with its name
papers = dict(connection.execute("SELECT paper_id, name FROM papers;").fetchall())
for paper_id, cost in costs.items():
yield f"{papers[paper_id]}: {cost:.2f}"
def add_new_paper(connection: Connection, name: str, days_delivered: list[bool], days_cost: list[float]) -> None:
"""add a new paper
- do not allow if the paper already exists"""
# check if the paper already exists
if connection.execute(
"SELECT EXISTS (SELECT 1 FROM papers WHERE name = ?);",
(name,)).fetchone()[0]:
raise npbc_exceptions.PaperAlreadyExists(f"Paper \"{name}\" already exists."
)
# insert the paper
paper_id = connection.execute(
"INSERT INTO papers (name) VALUES (?) RETURNING papers.paper_id;",
(name,)
).fetchone()[0]
# create cost and delivered entries for each day
for day_id, (delivered, cost) in enumerate(zip(days_delivered, days_cost)):
connection.execute(
"INSERT INTO cost_and_delivery_data (paper_id, day_id, delivered, cost) VALUES (?, ?, ?, ?);",
(paper_id, day_id, delivered, cost)
)
return
def edit_existing_paper(
connection: Connection,
paper_id: int,
name: str | None = None,
days_delivered: list[bool] | None = None,
days_cost: list[float] | None = None
) -> None:
"""edit an existing paper
do not allow if the paper does not exist"""
# check if the paper exists
if not connection.execute(
"SELECT EXISTS (SELECT 1 FROM papers WHERE paper_id = ?);",
(paper_id,)).fetchone()[0]:
raise npbc_exceptions.PaperNotExists(f"Paper with ID {paper_id} does not exist."
)
# update the paper name
if name is not None:
connection.execute(
"UPDATE papers SET name = ? WHERE paper_id = ?;",
(name, paper_id)
)
# update the costs of each day
if days_cost is not None:
for day_id, cost in enumerate(days_cost):
connection.execute(
"UPDATE cost_and_delivery_data SET cost = ? WHERE paper_id = ? AND day_id = ?;",
(cost, paper_id, day_id)
)
# update the delivered status of each day
if days_delivered is not None:
for day_id, delivered in enumerate(days_delivered):
connection.execute(
"UPDATE cost_and_delivery_data SET delivered = ? WHERE paper_id = ? AND day_id = ?;",
(delivered, paper_id, day_id)
)
return
def delete_existing_paper(connection: Connection, paper_id: int) -> None:
"""delete an existing paper
- do not allow if the paper does not exist"""
# check if the paper exists
if not connection.execute(
"SELECT EXISTS (SELECT 1 FROM papers WHERE paper_id = ?);",
(paper_id,)
).fetchone()[0]:
raise npbc_exceptions.PaperNotExists(f"Paper with ID {paper_id} does not exist.")
# delete the paper
connection.execute(
"DELETE FROM papers WHERE paper_id = ?;",
(paper_id,)
)
# delete the costs and delivery data for the paper
connection.execute(
"DELETE FROM cost_and_delivery_data WHERE paper_id = ?;",
(paper_id,)
)
return
def add_undelivered_string(connection: Connection, month: int, year: int, paper_id: int | None = None, *undelivered_strings: str) -> None:
"""record strings for date(s) paper(s) were not delivered
- if no paper ID is specified, all papers are assumed"""
# validate the strings
validate_undelivered_string(*undelivered_strings)
# if a paper ID is given
if paper_id:
# check that specified paper exists in the database
if not connection.execute(
"SELECT EXISTS (SELECT 1 FROM papers WHERE paper_id = ?);",
(paper_id,)).fetchone()[0]:
raise npbc_exceptions.PaperNotExists(f"Paper with ID {paper_id} does not exist."
)
# add the string(s)
params = [
(month, year, paper_id, string)
for string in undelivered_strings
]
connection.executemany("INSERT INTO undelivered_strings (month, year, paper_id, string) VALUES (?, ?, ?, ?);", params)
else:
# get the IDs of all papers
paper_ids = [
row[0]
for row in connection.execute(
"SELECT paper_id FROM papers;"
)
]
# add the string(s)
params = [
(month, year, paper_id, string)
for paper_id in paper_ids
for string in undelivered_strings
]
connection.executemany("INSERT INTO undelivered_strings (month, year, paper_id, string) VALUES (?, ?, ?, ?);", params)
return
def delete_undelivered_string(
connection: Connection,
string_id: int | None = None,
string: str | None = None,
paper_id: int | None = None,
month: int | None = None,
year: int | None = None
) -> None:
"""delete an existing undelivered string
- do not allow if the string does not exist"""
# initialize parameters for the WHERE clause of the SQL query
parameters = []
values = []
# check each parameter and add it to the WHERE clause if it is given
if string_id:
parameters.append("string_id")
values.append(string_id)
if string:
parameters.append("string")
values.append(string)
if paper_id:
parameters.append("paper_id")
values.append(paper_id)
if month:
parameters.append("month")
values.append(month)
if year:
parameters.append("year")
values.append(year)
# if no parameters are given, raise an error
if not parameters:
raise npbc_exceptions.NoParameters("No parameters given.")
# check if the string exists
check_query = "SELECT EXISTS (SELECT 1 FROM undelivered_strings"
conditions = ' AND '.join(
f"{parameter} = ?"
for parameter in parameters
)
if (1,) not in connection.execute(f"{check_query} WHERE {conditions});", values).fetchall():
raise npbc_exceptions.StringNotExists("String with given parameters does not exist.")
# if the string did exist, delete it
delete_query = "DELETE FROM undelivered_strings"
connection.execute(f"{delete_query} WHERE {conditions};", values)
return
def get_papers(connection: Connection) -> tuple[Papers]:
"""get all papers
- returns a list of tuples containing the following fields:
paper_id, paper_name, day_id, paper_delivered, paper_cost"""
raw_data = []
query = """
SELECT papers.paper_id, papers.name, cost_and_delivery_data.day_id, cost_and_delivery_data.delivered, cost_and_delivery_data.cost
FROM papers
INNER JOIN cost_and_delivery_data ON papers.paper_id = cost_and_delivery_data.paper_id
ORDER BY papers.paper_id, cost_and_delivery_data.day_id;
"""
raw_data = connection.execute(query).fetchall()
return tuple(map(
lambda row: Papers(*row),
raw_data
))
def get_undelivered_strings(
connection: Connection,
string_id: int | None = None,
month: int | None = None,
year: int | None = None,
paper_id: int | None = None,
string: str | None = None
) -> tuple[UndeliveredStrings]:
"""get undelivered strings
- the user may specify as many as they want parameters
- available parameters: string_id, month, year, paper_id, string
- returns a tuple of tuples containing the following fields:
string_id, paper_id, year, month, string"""
# initialize parameters for the WHERE clause of the SQL query
parameters = []
values = []
data = []
# check each parameter and add it to the WHERE clause if it is given
if string_id:
parameters.append("string_id")
values.append(string_id)
if month:
parameters.append("month")
values.append(month)
if year:
parameters.append("year")
values.append(year)
if paper_id:
parameters.append("paper_id")
values.append(paper_id)
if string:
parameters.append("string")
values.append(string)
# generate the SQL query
main_query = "SELECT string_id, paper_id, year, month, string FROM undelivered_strings"
if not parameters:
query = f"{main_query};"
else:
conditions = ' AND '.join(
f"{parameter} = ?"
for parameter in parameters
)
query = f"{main_query} WHERE {conditions};"
data = connection.execute(query, values).fetchall()
# if no data was found, raise an error
if not data:
raise npbc_exceptions.StringNotExists("String with given parameters does not exist.")
return tuple(map(
lambda row: UndeliveredStrings(*row),
data
))
def get_logged_data(
connection: Connection,
query_paper_id: int | None = None,
query_log_id: int | None = None,
query_month: int | None = None,
query_year: int | None = None,
query_timestamp: date | None = None
) -> Generator[tuple[int, int, int, int, str, str | float], None, None]:
"""get logged data
- the user may specify as parameters many as they want
- available parameters: paper_id, log_id, month, year, timestamp
- yields: tuples containing the following fields:
log_id, paper_id, month, year, timestamp, date | cost."""
# initialize parameters for the WHERE clause of the SQL query
parameters = []
values = ()
# check each parameter and add it to the WHERE clause if it is given
if query_paper_id:
parameters.append("paper_id")
values += (query_paper_id,)
if query_log_id:
parameters.append("log_id")
values += (query_log_id,)
if query_month:
parameters.append("month")
values += (query_month,)
if query_year:
parameters.append("year")
values += (query_year,)
if query_timestamp:
parameters.append("timestamp")
values += (query_timestamp.strftime(r'%d/%m/%Y %I:%M:%S %p'),)
# generate the SQL query
logs_base_query = """
SELECT log_id, paper_id, timestamp, month, year
FROM logs
ORDER BY log_id, paper_id
"""
if parameters:
conditions = ' AND '.join(
f"{parameter} = ?"
for parameter in parameters
)
logs_query = f"{logs_base_query} WHERE {conditions};"
else:
logs_query = f"{logs_base_query};"
dates_query = "SELECT log_id, date_not_delivered FROM undelivered_dates_logs;"
costs_query = "SELECT log_id, cost FROM cost_logs;"
logs = {
log_id: [paper_id, month, year, timestamp]
for log_id, paper_id, timestamp, month, year in connection.execute(logs_query, values).fetchall()
}
dates = connection.execute(dates_query).fetchall()
costs = connection.execute(costs_query).fetchall()
for log_id, date_undelivered in dates:
yield tuple(logs[log_id] + [date_undelivered])
for log_id, cost in costs:
yield tuple(logs[log_id] + [float(cost)])
def get_previous_month() -> date:
"""get the previous month, by looking at 1 day before the first day of the current month (duh)"""
return (datetime.today().replace(day=1) - timedelta(days=1)).replace(day=1)
def validate_month_and_year(month: int | None = None, year: int | None = None) -> None:
"""validate month and year
- month must be an integer between 1 and 12 inclusive
- year must be an integer greater than 0"""
if isinstance(month, int) and not (1 <= month <= 12):
raise npbc_exceptions.InvalidMonthYear("Month must be between 1 and 12.")
if isinstance(year, int) and (year <= 0):
raise npbc_exceptions.InvalidMonthYear("Year must be greater than 0.")
# if we get here, the month and year are valid
return