forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
square_root.py
63 lines (41 loc) · 1.22 KB
/
square_root.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import math
def fx(x: float, a: float) -> float:
return math.pow(x, 2) - a
def fx_derivative(x: float) -> float:
return 2 * x
def get_initial_point(a: float) -> float:
start = 2.0
while start <= a:
start = math.pow(start, 2)
return start
def square_root_iterative(
a: float, max_iter: int = 9999, tolerance: float = 1e-14
) -> float:
"""
Square root approximated using Newton's method.
https://en.wikipedia.org/wiki/Newton%27s_method
>>> all(abs(square_root_iterative(i) - math.sqrt(i)) <= 1e-14 for i in range(500))
True
>>> square_root_iterative(-1)
Traceback (most recent call last):
...
ValueError: math domain error
>>> square_root_iterative(4)
2.0
>>> square_root_iterative(3.2)
1.788854381999832
>>> square_root_iterative(140)
11.832159566199232
"""
if a < 0:
raise ValueError("math domain error")
value = get_initial_point(a)
for _ in range(max_iter):
prev_value = value
value = value - fx(value, a) / fx_derivative(value)
if abs(prev_value - value) < tolerance:
return value
return value
if __name__ == "__main__":
from doctest import testmod
testmod()