Tensorflow Object Detection Shell
1. Create a python virtual environment
2. Activate the python virtual environment
# mac
source env/bin/activate
# windows
.\env\Scripts\activate
pip install -r requirements.txt
1. Collect images for training
# Using all options
>>> collect --labels <label1> <label2> --limit <limit> --folder <images_folder>
# Using minimal options (limit=5, folder=collectedimages)
>>> collect --labels <label1> <label2>
2. Label collected images
# Using all options
>>> label --folder <images_folder>
# Using minimal options (folder=collectedimages)
>>> label
3. (Optional) Load a pretrained model
>>> load --url <pretrained_model_url>
# Using all options
>>> train --model <your_model_name> --labels <label1> <label2> --sample <sample_size> --pretrained <pretrained_model_name> --steps <number_of_steps> --folder <images_folder>
# Using minimal options (pretrained=ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8, steps=2000m, folder=collectedimages )
>>> train --model <your_model_name> --labels <label1> <label2> --train <number_of_trainees>
# Test in realtime (via webcam)
>>> test --model <your_model_name>