- Introduction
- Setup
- Example Workflows
- Prerequisites and Installation for AWS
- Prerequisites and Installation for Ubuntu
- Installing Cloud Native Core Stack on NVIDIA Certified Systems
- Kafka Topic Commands
- Additional Documentation
- Troubleshooting
- The dropna stage
This cloud deployment guide provides the necessary instructions to set up the minimum infrastructure and configuration needed to deploy the Morpheus Developer Kit and includes example workflows leveraging the deployment.
- This cloud deployment guide consists of the following steps:
- Set up of the NVIDIA Cloud Native Core Stack
- Set up Morpheus AI Engine
- Set up Morpheus SDK Client
- Models for MLflow Deployment
- Set up Morpheus MLflow
- Deploy models to Triton inference server
- Create Kafka topics
- Run example workloads
Note: This guide requires access to the NGC Public Catalog.
- Refer to prerequisites for Cloud (AWS) here or On-Prem (Ubuntu) here
- Registration in the NGC Public Catalog
Continue with the setup steps below once the host system is installed, configured, and satisfies all prerequisites.
First, you will need to set up your NGC API Key to access all the Morpheus components, using the linked instructions from the NGC Registry CLI User Guide.
Once you've created your API key, create an environment variable containing your API key for use by the commands used further in this document:
export API_KEY="<NGC_API_KEY>"
Next, install and configure the NGC Registry CLI on your system using the linked instructions from the NGC Registry CLI User Guide.
Next, create a namespace and an environment variable for the namespace to organize the Kubernetes cluster deployed via the Cloud Native Core Stack and logically separate Morpheus related deployments from other projects using the following command:
export NAMESPACE="<YOUR_NAMESPACE>"
kubectl create namespace ${NAMESPACE}
The Helm chart (morpheus-ai-engine
) that offers the auxiliary components required to execute certain Morpheus workflows is referred to as the Morpheus AI Engine. It comprises of the following components
- Triton Inference Server [ ai-engine ] from NVIDIA for processing inference requests.
- Kafka Broker [ broker ] to consume and publish messages.
- Zookeeper [ zookeeper ] to maintain coordination between the Kafka Brokers.
Follow the below steps to install Morpheus AI Engine:
helm fetch https://helm.ngc.nvidia.com/nvidia/morpheus/charts/morpheus-ai-engine-23.07.tgz --username='$oauthtoken' --password=$API_KEY --untar
helm install --set ngc.apiKey="$API_KEY" \
--namespace $NAMESPACE \
<YOUR_RELEASE_NAME> \
morpheus-ai-engine
After the installation, you can verify that the Kubernetes pods are running successfully using the following command:
kubectl -n $NAMESPACE get all
Output:
pod/ai-engine-65f59ddcf7-mdmdt 1/1 Running 0 54s
pod/broker-76f7c64dc9-6rldp 1/1 Running 1 54s
pod/zookeeper-87f9f4dd-znjnb 1/1 Running 0 54s
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/ai-engine ClusterIP 10.109.56.231 <none> 8000/TCP,8001/TCP,8002/TCP 54s
service/broker ClusterIP 10.101.103.250 <none> 9092/TCP 54s
service/zookeeper ClusterIP 10.110.55.141 <none> 2181/TCP 54s
NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/ai-engine 1/1 1 1 54s
deployment.apps/broker 1/1 1 1 54s
deployment.apps/zookeeper 1/1 1 1 54s
NAME DESIRED CURRENT READY AGE
replicaset.apps/ai-engine-65f59ddcf7 1 1 1 54s
replicaset.apps/broker-76f7c64dc9 1 1 1 54s
replicaset.apps/zookeeper-87f9f4dd 1 1 1 54s
Run the following command to pull the Morpheus SDK Client (referred to as Helm chart morpheus-sdk-client
) on to your instance:
helm fetch https://helm.ngc.nvidia.com/nvidia/morpheus/charts/morpheus-sdk-client-23.07.tgz --username='$oauthtoken' --password=$API_KEY --untar
Install the Morpheus SDK client pod in sleep mode to copy its sample datasets and models from the container to a shared location that other pods can access. If no sdk.args
is supplied, the default value /bin/sleep infinity
from the chart is used in the following command.
helm install --set ngc.apiKey="$API_KEY" \
--namespace $NAMESPACE \
helper \
morpheus-sdk-client
Check the status of the pod to make sure it's up and running.
kubectl -n $NAMESPACE get all | grep sdk-cli-helper
Output:
pod/sdk-cli-helper 1/1 Running 0 41s
Connect to the sdk-cli-helper container and copy the models to /common
, which is mapped to /opt/morpheus/common
on the host and where MLflow will have access to model files.
kubectl -n $NAMESPACE exec sdk-cli-helper -- cp -RL /workspace/models /common
The Morpheus MLflow Helm chart offers MLflow server with Triton plugin to deploy, update, and remove models from the Morpheus AI Engine. The MLflow server UI can be accessed using NodePort 30500
. Follow the below steps to install the Morpheus MLflow:
helm fetch https://helm.ngc.nvidia.com/nvidia/morpheus/charts/morpheus-mlflow-23.07.tgz --username='$oauthtoken' --password=$API_KEY --untar
helm install --set ngc.apiKey="$API_KEY" \
--namespace $NAMESPACE \
<YOUR_RELEASE_NAME> \
morpheus-mlflow
Note: If the default port is already allocated, Helm throws below error. Choose an alternative by adjusting the
dashboardPort
value in themorpheus-mlflow/values.yaml
file, remove the previous release and reinstall it.
Error: Service "mlflow" is invalid: spec.ports[0].nodePort: Invalid value: 30500: provided port is already allocated
After the installation, you can verify that the MLflow pod is running successfully using the following command:
kubectl -n $NAMESPACE get all | grep pod/mlflow
Output:
pod/mlflow-6d98 1/1 Running 0 39s
Attach to the MLflow pod to publish models to the MLflow server and then deploy it onto Morpheus AI Engine:
kubectl -n $NAMESPACE exec -it deploy/mlflow -- bash
(mlflow) root@mlflow-6d98:/mlflow#
Important
: When (mlflow) is present, commands are directly within the container.
First let's examine the syntax of the commands we will be using to communicate with the MLflow Triton plugin before we start deploying models. Publish models to MLflow server is in the form of:
(mlflow) root@mlflow-6d98:/mlflow# python publish_model_to_mlflow.py \
--model_name <REF_MODEL_NAME> \
--model_directory <MODEL_DIR_PATH> \
--flavor <MODEL_FLAVOR>
Deploy models to Morpheus AI Engine:
(mlflow) root@mlflow-6d98:/mlflow# mlflow deployments create -t triton \
--flavor <MODEL_FLAVOR> \
--name <REF_MODEL_NAME> \
-m models:/<REF_MODEL_NAME>/1 \
-C "version=<VERSION_NUMBER>"
Update deployed models in Morpheus AI Engine:
(mlflow) root@mlflow-6d98:/mlflow# mlflow deployments update -t triton \
--flavor <MODEL_FLAVOR> \
--name <REF_MODEL_NAME>/<EXISTING_VERSION_NUMBER> \
-m models:/<REF_MODEL_NAME>/<DESIRED_VERSION_NUMBER>
Delete deployed models from Morpheus AI Engine:
(mlflow) root@mlflow-6d98:/mlflow# mlflow deployments delete -t triton \
--name <REF_MODEL_NAME>/<VERSION_NUMBER>
Now that we've figured out how to deploy models let's move on to the next step. Now it's time to deploy the relevant models, which have already been copied to /opt/morpheus/common/models
which are bound to /common/models
within the MLflow pod.
(mlflow) root@mlflow-6d98:/mlflow# ls -lrt /common/models
Output:
drwxr-xr-x 3 ubuntu ubuntu 4096 Apr 13 23:47 sid-minibert-onnx
drwxr-xr-x 2 root root 4096 Apr 21 17:09 abp-models
drwxr-xr-x 4 root root 4096 Apr 21 17:09 datasets
drwxr-xr-x 4 root root 4096 Apr 21 17:09 fraud-detection-models
drwxr-xr-x 2 root root 4096 Apr 21 17:09 dfp-models
drwxr-xr-x 3 root root 4096 Apr 21 17:10 mlflow
drwxr-xr-x 2 root root 4096 Apr 21 17:10 log-parsing-models
drwxr-xr-x 2 root root 4096 Apr 21 17:10 phishing-models
drwxr-xr-x 2 root root 4096 Apr 21 17:10 sid-models
drwxr-xr-x 8 root root 4096 Apr 21 17:10 training-tuning-scripts
drwxr-xr-x 7 root root 4096 Apr 21 17:10 validation-inference-scripts
drwxr-xr-x 7 root root 4096 Apr 21 17:10 triton-model-repo
-rw-r--r-- 1 root root 4213 Apr 21 17:10 README.md
-rw-r--r-- 1 root root 4862 Apr 21 17:10 model_cards.csv
-rw-r--r-- 1 root root 1367 Apr 21 17:10 model-information.csv
Publish and deploy sid-minibert-onnx model:
(mlflow) root@mlflow-6d98:/mlflow# python publish_model_to_mlflow.py \
--model_name sid-minibert-onnx \
--model_directory /common/models/triton-model-repo/sid-minibert-onnx \
--flavor triton
(mlflow) root@mlflow-6d98:/mlflow# mlflow deployments create -t triton \
--flavor triton \
--name sid-minibert-onnx \
-m models:/sid-minibert-onnx/1 \
-C "version=1"
Publish and deploy phishing-bert-onnx model:
(mlflow) root@mlflow-6d98:/mlflow# python publish_model_to_mlflow.py \
--model_name phishing-bert-onnx \
--model_directory /common/models/triton-model-repo/phishing-bert-onnx \
--flavor triton
(mlflow) root@mlflow-6d98:/mlflow# mlflow deployments create -t triton \
--flavor triton \
--name phishing-bert-onnx \
-m models:/phishing-bert-onnx/1 \
-C "version=1"
Publish and deploy abp-nvsmi-xgb model:
(mlflow) root@mlflow-6d98:/mlflow# python publish_model_to_mlflow.py \
--model_name abp-nvsmi-xgb \
--model_directory /common/models/triton-model-repo/abp-nvsmi-xgb \
--flavor triton
(mlflow) root@mlflow-6d98:/mlflow# mlflow deployments create -t triton \
--flavor triton \
--name abp-nvsmi-xgb \
-m models:/abp-nvsmi-xgb/1 \
-C "version=1"
Exit from the container
(mlflow) root@mlflow-6d98:/mlflow# exit
Run the following command to verify that the models were successfully deployed on the AI Engine:
kubectl -n $NAMESPACE logs deploy/ai-engine
Output:
I1202 14:09:03.098085 1 api.cu:79] TRITONBACKEND_ModelInitialize: abp-nvsmi-xgb (version 1)
I1202 14:09:03.101910 1 api.cu:123] TRITONBACKEND_ModelInstanceInitialize: abp-nvsmi-xgb_0 (GPU device 0)
I1202 14:09:03.543719 1 model_instance_state.cu:101] Using GPU for predicting with model 'abp-nvsmi-xgb_0'
I1202 14:09:03.563425 1 api.cu:123] TRITONBACKEND_ModelInstanceInitialize: abp-nvsmi-xgb_0 (GPU device 1)
I1202 14:09:03.980621 1 model_instance_state.cu:101] Using GPU for predicting with model 'abp-nvsmi-xgb_0'
I1202 14:09:03.981678 1 model_repository_manager.cc:1183] successfully loaded 'abp-nvsmi-xgb' version 1
We will need to create Kafka topics for input and output data to run some of the pipeline examples.
Check if any Kafka topics exist already. If any exist, you can either delete the previous topics or re-use them.
kubectl -n $NAMESPACE exec deploy/broker -c broker -- kafka-topics.sh --list --zookeeper zookeeper:2181
Run the following command twice, once to create an input topic, and again to create an output topic, making sure that the input topic and output topic have different names:
kubectl -n $NAMESPACE exec deploy/broker -c broker -- kafka-topics.sh \
--create \
--bootstrap-server broker:9092 \
--replication-factor 1 \
--partitions 3 \
--topic <YOUR_KAFKA_TOPIC>
This section describes example workflows to run on Morpheus. Four sample pipelines are provided.
- AutoEncoder pipeline performing Digital Fingerprinting (DFP).
- NLP pipeline performing Phishing Detection (PD).
- NLP pipeline performing Sensitive Information Detection (SID).
- FIL pipeline performing Anomalous Behavior Profiling (ABP).
Multiple command options are given for each pipeline, with varying data input/output methods, ranging from local files to Kafka Topics.
We recommend only deploying one pipeline at a time. To remove previously deployed pipelines, run the following command:
helm delete -n $NAMESPACE <YOUR_RELEASE_NAME>
To publish messages to a Kafka topic, we need to copy datasets to locations where they can be accessed from the host.
kubectl -n $NAMESPACE exec sdk-cli-helper -- cp -R /workspace/examples/data /common
Refer to the Morpheus CLI Overview and Building a Pipeline documentation for more information regarding the commands.
Note: Before running the example pipelines, ensure the criteria below are met:
- Ensure models specific to the pipeline are deployed.
- Input and Output Kafka topics have been created.
- Recommended to create an output directory under
/opt/morpheus/common/data
which is bound to/common/data
(pod/container) for storing inference or validation results. - Replace <YOUR_OUTPUT_DIR> with your directory name.
- Replace <YOUR_INPUT_KAFKA_TOPIC> with your input Kafka topic name.
- Replace <YOUR_OUTPUT_KAFKA_TOPIC> with your output Kafka topic name.
- Replace <YOUR_RELEASE_NAME> with the name you want.
For reference, the Morpheus SDK Client install pipeline command template is provided. We will examine this further in the example workflows section, but for now, let's proceed to the next step.
helm install --set ngc.apiKey="$API_KEY" \
--set sdk.args="<REPLACE_RUN_PIPELINE_COMMAND_HERE>" \
--namespace $NAMESPACE \
<YOUR_RELEASE_NAME> \
morpheus-sdk-client
The following AutoEncoder pipeline example shows how to train and validate the AutoEncoder model and write the inference results to a specified location. Digital fingerprinting has also been referred to as HAMMAH (Human as Machine <> Machine as Human). These use cases are currently implemented to detect user behavior changes that indicate a change from a human to a machine or a machine to a human, thus leaving a "digital fingerprint". The model is an ensemble of an autoencoder and fast fourier transform reconstruction.
Inference and training based on a userid (user123
). The model is trained once and inference is conducted on the supplied input entries in the example pipeline below. The --train_data_glob
parameter must be removed for continuous training.
helm install --set ngc.apiKey="$API_KEY" \
--set sdk.args="morpheus --log_level=DEBUG run \
--num_threads=2 \
--edge_buffer_size=4 \
--pipeline_batch_size=1024 \
--model_max_batch_size=1024 \
--use_cpp=False \
pipeline-ae \
--columns_file=data/columns_ae_cloudtrail.txt \
--userid_filter=user123 \
--feature_scaler=standard \
--userid_column_name=userIdentitysessionContextsessionIssueruserName \
from-cloudtrail --input_glob=/common/models/datasets/validation-data/dfp-cloudtrail-*-input.csv \
--max_files=200 \
train-ae --train_data_glob=/common/models/datasets/training-data/dfp-cloudtrail-*.csv \
--source_stage_class=morpheus.stages.input.cloud_trail_source_stage.CloudTrailSourceStage \
--seed 42 \
preprocess \
inf-pytorch \
add-scores \
timeseries --resolution=1m --zscore_threshold=8.0 --hot_start \
monitor --description 'Inference Rate' --smoothing=0.001 --unit inf \
serialize \
to-file --filename=/common/data/<YOUR_OUTPUT_DIR>/cloudtrail-dfp-detections.csv --overwrite" \
--namespace $NAMESPACE \
<YOUR_RELEASE_NAME> \
morpheus-sdk-client
For more information on the Digital Fingerprint use cases, refer to the starter example and a more production-ready example that can be found in the examples
source directory.
The following Phishing Detection pipeline examples use a pre-trained NLP model to analyze emails (body) and determine phishing or benign. Here is the sample data as shown below is used to pass as an input to the pipeline.
{"data":"Abedin Huma <[email protected]>Wednesday July 15 2009 1:44 PMRe: ArtWill be off campus at meetingBut you should definitely come I think they have found some good things."}
{"data":"See NIMills Cheryl D <[email protected]>Saturday December 112010 1:36 PMFw: S is calling Leahy today - thx for all the help; advise if a diff no for him today"}
{"data":"Here is Draft"}
{"data":"Ok"}
Pipeline example to read data from a file, run inference using a phishing-bert-onnx
model, and write inference results to the specified output file:
helm install --set ngc.apiKey="$API_KEY" \
--set sdk.args="morpheus --log_level=DEBUG run \
--num_threads=2 \
--edge_buffer_size=4 \
--pipeline_batch_size=1024 \
--model_max_batch_size=32 \
--use_cpp=True \
pipeline-nlp \
--model_seq_length=128 \
--labels_file=data/labels_phishing.txt \
from-file --filename=./examples/data/email.jsonlines \
monitor --description 'FromFile Rate' --smoothing=0.001 \
deserialize \
preprocess --vocab_hash_file=data/bert-base-uncased-hash.txt --truncation=True --do_lower_case=True --add_special_tokens=False \
monitor --description 'Preprocess Rate' \
inf-triton --model_name=phishing-bert-onnx --server_url=ai-engine:8000 --force_convert_inputs=True \
monitor --description 'Inference Rate' --smoothing=0.001 --unit inf \
add-class --label=pred --threshold=0.7 \
serialize \
to-file --filename=/common/data/<YOUR_OUTPUT_DIR>/phishing-bert-onnx-output.jsonlines --overwrite" \
--namespace $NAMESPACE \
<YOUR_RELEASE_NAME> \
morpheus-sdk-client
When the pipeline runs successfully, an output file phishing-bert-onnx-output.jsonlines
will appear in the output directory.
Pipeline example to read messages from an input Kafka topic, run inference using a phishing-bert-onnx
model, and write the results of the inference to an output Kafka topic:
helm install --set ngc.apiKey="$API_KEY" \
--set sdk.args="morpheus --log_level=DEBUG run \
--num_threads=2 \
--edge_buffer_size=4 \
--pipeline_batch_size=1024 \
--model_max_batch_size=32 \
--use_cpp=True \
pipeline-nlp \
--model_seq_length=128 \
--labels_file=data/labels_phishing.txt \
from-kafka --input_topic <YOUR_INPUT_KAFKA_TOPIC> --bootstrap_servers broker:9092 \
monitor --description 'FromKafka Rate' --smoothing=0.001 \
deserialize \
preprocess --vocab_hash_file=data/bert-base-uncased-hash.txt --truncation=True --do_lower_case=True --add_special_tokens=False \
monitor --description 'Preprocess Rate' \
inf-triton --force_convert_inputs=True --model_name=phishing-bert-onnx --server_url=ai-engine:8000 \
monitor --description='Inference Rate' --smoothing=0.001 --unit inf \
add-class --label=pred --threshold=0.7 \
serialize --exclude '^ts_' \
to-kafka --output_topic <YOUR_OUTPUT_KAFKA_TOPIC> --bootstrap_servers broker:9092" \
--namespace $NAMESPACE \
<YOUR_RELEASE_NAME> \
morpheus-sdk-client
Make sure you create input and output Kafka topics before you start the pipeline. After the pipeline has been started, load the individual corresponding data files from the downloaded sample into the selected input topic using the command below:
kubectl -n $NAMESPACE exec -it deploy/broker -c broker -- kafka-console-producer.sh \
--broker-list broker:9092 \
--topic <YOUR_INPUT_KAFKA_TOPIC> < \
<YOUR_INPUT_DATA_FILE_PATH_EXAMPLE: /opt/morpheus/common/data/email.jsonlines>
Note: This should be used for development purposes only via this developer kit. Loading from the file into Kafka should not be used in production deployments of Morpheus.
The following Sensitive Information Detection pipeline examples use a pre-trained NLP model to ingest and analyze PCAP (packet capture network traffic) input sample data, like the example below, to inspect IP traffic across data center networks.
{"timestamp": 1616380971990, "host_ip": "10.188.40.56", "data_len": "309", "data": "POST /simpledatagen/ HTTP/1.1\r\nHost: echo.gtc1.netqdev.cumulusnetworks.com\r\nUser-Agent: python-requests/2.22.0\r\nAccept-Encoding: gzip, deflate\r\nAccept: */*\r\nConnection: keep-alive\r\nContent-Length: 73\r\nContent-Type: application/json\r\n\r\n", "src_mac": "04:3f:72:bf:af:74", "dest_mac": "b4:a9:fc:3c:46:f8", "protocol": "6", "src_ip": "10.20.16.248", "dest_ip": "10.244.0.59", "src_port": "50410", "dest_port": "80", "flags": "24", "is_pii": false}
{"timestamp": 1616380971991, "host_ip": "10.188.40.56", "data_len": "139", "data": "\"{\\\"markerEmail\\\": \\\"FuRLFaAZ identify benefit BneiMvCZ join 92694759\\\"}\"", "src_mac": "04:3f:72:bf:af:74", "dest_mac": "b4:a9:fc:3c:46:f8", "protocol": "6", "src_ip": "10.244.0.1", "dest_ip": "10.244.0.25", "src_port": "50410", "dest_port": "80", "flags": "24", "is_pii": false}
Pipeline example to read data from a file, run inference using a sid-minibert-onnx
model, and write inference results to the specified output file:
helm install --set ngc.apiKey="$API_KEY" \
--set sdk.args="morpheus --log_level=DEBUG run \
--num_threads=3 \
--edge_buffer_size=4 \
--use_cpp=True \
--pipeline_batch_size=1024 \
--model_max_batch_size=32 \
pipeline-nlp \
--model_seq_length=256 \
from-file --filename=./examples/data/pcap_dump.jsonlines \
monitor --description 'FromFile Rate' --smoothing=0.001 \
deserialize \
preprocess --vocab_hash_file=data/bert-base-uncased-hash.txt --truncation=True --do_lower_case=True --add_special_tokens=False \
monitor --description='Preprocessing rate' \
inf-triton --force_convert_inputs=True --model_name=sid-minibert-onnx --server_url=ai-engine:8000 \
monitor --description='Inference rate' --smoothing=0.001 --unit inf \
add-class \
serialize --exclude '^ts_' \
to-file --filename=/common/data/<YOUR_OUTPUT_DIR>/sid-minibert-onnx-output.jsonlines --overwrite" \
--namespace $NAMESPACE \
<YOUR_RELEASE_NAME> \
morpheus-sdk-client
When the pipeline runs successfully, an output file sid-minibert-onnx-output.jsonlines will appear in the output directory.
Pipeline example to read messages from an input Kafka topic, run inference using a sid-minibert-onnx model, and write the results of the inference to an output Kafka topic:
helm install --set ngc.apiKey="$API_KEY" \
--set sdk.args="morpheus --log_level=DEBUG run \
--num_threads=3 \
--edge_buffer_size=4 \
--use_cpp=True \
--pipeline_batch_size=1024 \
--model_max_batch_size=32 \
pipeline-nlp \
--model_seq_length=256 \
from-kafka --input_topic <YOUR_INPUT_KAFKA_TOPIC> --bootstrap_servers broker:9092 \
monitor --description 'FromKafka Rate' --smoothing=0.001 \
deserialize \
preprocess --vocab_hash_file=data/bert-base-uncased-hash.txt --truncation=True --do_lower_case=True --add_special_tokens=False \
monitor --description='Preprocessing Rate' \
inf-triton --force_convert_inputs=True --model_name=sid-minibert-onnx --server_url=ai-engine:8000 \
monitor --description='Inference Rate' --smoothing=0.001 --unit inf \
add-class \
serialize --exclude '^ts_' \
to-kafka --output_topic <YOUR_OUTPUT_KAFKA_TOPIC> --bootstrap_servers broker:9092" \
--namespace $NAMESPACE \
<YOUR_RELEASE_NAME> \
morpheus-sdk-client
Make sure you create input and output Kafka topics before you start the pipeline. After the pipeline has been started, load the individual corresponding data files from the downloaded sample into the selected input topic using the command below:
kubectl -n $NAMESPACE exec -it deploy/broker -c broker -- kafka-console-producer.sh \
--broker-list broker:9092 \
--topic <YOUR_INPUT_KAFKA_TOPIC> < \
<YOUR_INPUT_DATA_FILE_PATH_EXAMPLE: ${HOME}/examples/data/pcap_dump.jsonlines>
Note: This should be used for development purposes only via this developer kit. Loading from the file into Kafka should not be used in production deployments of Morpheus.
The following Anomalous Behavior Profiling pipeline examples use a pre-trained FIL model to ingest and analyze NVIDIA System Management Interface (nvidia-smi) logs, like the example below, as input sample data to identify crypto mining activity on GPU devices.
{"nvidia_smi_log.gpu.pci.tx_util": "0 KB/s", "nvidia_smi_log.gpu.pci.rx_util": "0 KB/s", "nvidia_smi_log.gpu.fb_memory_usage.used": "3980 MiB", "nvidia_smi_log.gpu.fb_memory_usage.free": "12180 MiB", "nvidia_smi_log.gpu.bar1_memory_usage.total": "16384 MiB", "nvidia_smi_log.gpu.bar1_memory_usage.used": "11 MiB", "nvidia_smi_log.gpu.bar1_memory_usage.free": "16373 MiB", "nvidia_smi_log.gpu.utilization.gpu_util": "0 %", "nvidia_smi_log.gpu.utilization.memory_util": "0 %", "nvidia_smi_log.gpu.temperature.gpu_temp": "61 C", "nvidia_smi_log.gpu.temperature.gpu_temp_max_threshold": "90 C", "nvidia_smi_log.gpu.temperature.gpu_temp_slow_threshold": "87 C", "nvidia_smi_log.gpu.temperature.gpu_temp_max_gpu_threshold": "83 C", "nvidia_smi_log.gpu.temperature.memory_temp": "57 C", "nvidia_smi_log.gpu.temperature.gpu_temp_max_mem_threshold": "85 C", "nvidia_smi_log.gpu.power_readings.power_draw": "61.77 W", "nvidia_smi_log.gpu.clocks.graphics_clock": "1530 MHz", "nvidia_smi_log.gpu.clocks.sm_clock": "1530 MHz", "nvidia_smi_log.gpu.clocks.mem_clock": "877 MHz", "nvidia_smi_log.gpu.clocks.video_clock": "1372 MHz", "nvidia_smi_log.gpu.applications_clocks.graphics_clock": "1312 MHz", "nvidia_smi_log.gpu.applications_clocks.mem_clock": "877 MHz", "nvidia_smi_log.gpu.default_applications_clocks.graphics_clock": "1312 MHz", "nvidia_smi_log.gpu.default_applications_clocks.mem_clock": "877 MHz", "nvidia_smi_log.gpu.max_clocks.graphics_clock": "1530 MHz", "nvidia_smi_log.gpu.max_clocks.sm_clock": "1530 MHz", "nvidia_smi_log.gpu.max_clocks.mem_clock": "877 MHz", "nvidia_smi_log.gpu.max_clocks.video_clock": "1372 MHz", "nvidia_smi_log.gpu.max_customer_boost_clocks.graphics_clock": "1530 MHz", "nvidia_smi_log.gpu.processes.process_info.0.process_name": "python", "nvidia_smi_log.gpu.processes.process_info.1.process_name": "tritonserver", "hostname": "ip-10-100-8-98", "timestamp": 1615542360.9566503}
Pipeline example to read data from a file, run inference using an abp-nvsmi-xgb
model, and write inference results to the specified output file.
helm install --set ngc.apiKey="$API_KEY" \
--set sdk.args="morpheus --log_level=DEBUG run \
--num_threads=3 \
--edge_buffer_size=4 \
--pipeline_batch_size=1024 \
--model_max_batch_size=64 \
--use_cpp=True \
pipeline-fil --columns_file=data/columns_fil.txt \
from-file --filename=./examples/data/nvsmi.jsonlines \
monitor --description 'FromFile Rate' --smoothing=0.001 \
deserialize \
preprocess \
monitor --description='Preprocessing Rate' \
inf-triton --model_name=abp-nvsmi-xgb --server_url=ai-engine:8000 --force_convert_inputs=True \
monitor --description='Inference Rate' --smoothing=0.001 --unit inf \
add-class \
serialize --exclude '^nvidia_smi_log' --exclude '^ts_' \
to-file --filename=/common/data/<YOUR_OUTPUT_DIR>/abp-nvsmi-xgb-output.jsonlines --overwrite" \
--namespace $NAMESPACE \
<YOUR_RELEASE_NAME> \
morpheus-sdk-client
Pipeline example to read messages from an input Kafka topic, run inference using an abp-nvsmi-xgb
model, and write the results of the inference to an output Kafka topic:
helm install --set ngc.apiKey="$API_KEY" \
--set sdk.args="morpheus --log_level=DEBUG run \
--num_threads=3 \
--pipeline_batch_size=1024 \
--model_max_batch_size=64 \
--use_cpp=True \
pipeline-fil --columns_file=data/columns_fil.txt \
from-kafka --input_topic <YOUR_INPUT_KAFKA_TOPIC> --bootstrap_servers broker:9092 \
monitor --description 'FromKafka Rate' --smoothing=0.001 \
deserialize \
preprocess \
monitor --description='Preprocessing Rate' \
inf-triton --model_name=abp-nvsmi-xgb --server_url=ai-engine:8000 --force_convert_inputs=True \
monitor --description='Inference Rate' --smoothing=0.001 --unit inf \
add-class \
serialize --exclude '^nvidia_smi_log' \ --exclude '^ts_' \
to-kafka --output_topic <YOUR_OUTPUT_KAFKA_TOPIC> --bootstrap_servers broker:9092" \
--namespace $NAMESPACE \
<YOUR_RELEASE_NAME> \
morpheus-sdk-client
Make sure you create input and output Kafka topics before you start the pipeline. After the pipeline has been started, load the individual corresponding data files from the downloaded sample into the selected input topic using the command below:
kubectl -n $NAMESPACE exec -it deploy/broker -c broker -- kafka-console-producer.sh \
--broker-list broker:9092 \
--topic <YOUR_INPUT_KAFKA_TOPIC> < \
<YOUR_INPUT_DATA_FILE_PATH_EXAMPLE: ${HOME}/examples/data/nvsmi.jsonlines>
Note: This should be used for development purposes only via this developer kit. Loading from the file into Kafka should not be used in production deployments of Morpheus.
Once you've deployed the SDK client to run a pipeline, you can check the status of the pod using the following command:
kubectl -n $NAMESPACE get pods sdk-cli-<RELEASE_NAME>
NAME READY STATUS RESTARTS AGE
sdk-cli-6c9575f648-gfdd2 1/1 Running 0 3m23s
Then check that the pipeline is running successfully using the following command:
kubectl -n $NAMESPACE logs sdk-cli-<RELEASE_NAME>
Output:
Configuring Pipeline via CLI
Starting pipeline via CLI... Ctrl+C to Quit
Preprocessing rate: 7051messages [00:09, 4372.75messages/s]
Inference rate: 7051messages [00:04, 4639.40messages/s]
- AWS account with the ability to create/modify EC2 instances
- AWS EC2 G4 instance with T4 or V100 GPU, at least 64GB RAM, 8 cores CPU, and 100 GB storage.
On your AWS EC2 G4 instance, follow the instructions in the linked document to install NVIDIA's Cloud Native Core Stack for AWS.
- NVIDIA-Certified System
- NVIDIA Pascal GPU or newer (Compute Capability >= 6.0)
- Ubuntu 20.04 LTS or newer
On your NVIDIA-Certified System, follow the instructions in the linked document to install NVIDIA's Cloud Native Core Stack.
List available Kafka topics.
kubectl -n $NAMESPACE exec deploy/broker -c broker -- kafka-topics.sh \
--list --zookeeper zookeeper:2181
Create a partitioned Kafka topic with a single replication factor.
kubectl -n $NAMESPACE exec deploy/broker -c broker -- kafka-topics.sh \
--create \
--bootstrap-server broker:9092 \
--replication-factor 1 \
--partitions 1 \
--topic <YOUR_KAFKA_TOPIC>
Load data from a file to Kafka topic:
kubectl -n $NAMESPACE exec -it deploy/broker -c broker -- kafka-console-producer.sh \
--broker-list broker:9092 \
--topic <YOUR_KAFKA_TOPIC> < \
<YOUR_INPUT_DATA_FILE>
Note: This should be used for development purposes only via this developer kit. Loading from the file into Kafka should not be used in production deployments of Morpheus.
Consume messages from Kafka topic:
kubectl -n $NAMESPACE exec deploy/broker -c broker -- kafka-console-consumer.sh \
--bootstrap-server broker:9092 \
--topic <YOUR_KAFKA_TOPIC> \
--group <YOUR_CONSUMER_GROUP_ID>
Delete Kafka topic:
kubectl -n $NAMESPACE exec deploy/broker -c broker -- kafka-topics.sh \
--delete --zookeeper zookeeper:2181 \
--topic <YOUR_KAFKA_TOPIC>
For more information on how to use the Morpheus Python API to customize and run your own optimized AI pipelines, Refer to below documentation.
This section lists solutions to problems you might encounter with Morpheus or from its supporting components.
- Models Unloaded After Reboot
- When the pod is restarted, K8s will not automatically load the models. Since models are deployed to ai-engine in explicit mode using MLflow, we'd have to manually deploy them again using the Model Deployment process.
- AI Engine CPU Only Mode
- After a server restart, the ai-engine pod on k8s can start up before the GPU operator infrastructure is available, making it "think" there is no driver installed (i.e., CPU -only mode).
- Improve Pipeline Message Processing Rate
- Below settings need to be considered
- Provide the workflow with the optimal number of threads (
—num threads
), as having more or fewer threads can have an impact on pipeline performance. - Consider adjusting
pipeline_batch_size
andmodel_max_batch_size
- Provide the workflow with the optimal number of threads (
- Below settings need to be considered
- Kafka Message Offset Commit Fail
- Error Message
1649207839.253|COMMITFAIL|rdkafka#consumer-2| [thrd:main]: Offset commit (manual) failed for 1/1 partition(s) in join-state wait-unassign-call: Broker: Unknown member: topic[0]@112071(Broker: Unknown member)
-
Problem: If the standalone kafka cluster is receiving significant message throughput from the producer, this error may happen.
-
Solution: Reinstall the Morpheus workflow and reduce the Kafka topic's message retention time and message producing rate.
The Drop Null Attributes stage (dropna) requires the specification of a column name. This column will vary from use case (and its input data) to use case. These are the applicable columns for the pre-built pipelines provided by Morpheus.
Input | Columns |
---|---|
Azure DFP | userPrincipalName |
Duo DFP | username |
DFP Cloudtrail | userIdentitysessionContextsessionIssueruserName |
data | |
GNN | index, client_node, merchant_node |
Log Parsing | raw |
PCAP | data |
Ransomware | PID, Process, snapshot_id, timestamp, source |