diff --git a/astronomy/orbit_recurrence_body.hpp b/astronomy/orbit_recurrence_body.hpp index 0a4bf563e4..045b530817 100644 --- a/astronomy/orbit_recurrence_body.hpp +++ b/astronomy/orbit_recurrence_body.hpp @@ -98,9 +98,9 @@ inline int OrbitRecurrence::number_of_revolutions() const { inline Angle OrbitRecurrence::equatorial_shift() const { double const Nᴛₒ = number_of_revolutions(); - double const ⅟κ = Cᴛₒ_ / Nᴛₒ; + double const κ⁻¹ = Cᴛₒ_ / Nᴛₒ; // See (8.24). - return -2 * π * Radian * ⅟κ; + return -2 * π * Radian * κ⁻¹; } inline Angle OrbitRecurrence::base_interval() const { diff --git a/astronomy/orbital_elements_body.hpp b/astronomy/orbital_elements_body.hpp index bb0420f7cc..23f07b8b06 100644 --- a/astronomy/orbital_elements_body.hpp +++ b/astronomy/orbital_elements_body.hpp @@ -212,8 +212,8 @@ absl::StatusOr OrbitalElements::ForRelativeDegreesOfFreedom( Angle const& Ω = elements.longitude_of_ascending_node; Angle const& M = *elements.mean_anomaly; Angle const& i = elements.inclination; - double const tg_½i = Tan(i / 2); - double const cotg_½i = 1 / tg_½i; + double const tg_iⳆ2 = Tan(i / 2); + double const cotg_iⳆ2 = 1 / tg_iⳆ2; double const sin_Ω = Sin(Ω); double const cos_Ω = Cos(Ω); return {.t = time, @@ -222,10 +222,10 @@ absl::StatusOr OrbitalElements::ForRelativeDegreesOfFreedom( .k = e * Cos(ϖ), .λ = UnwindFrom( unwound_λs[(time - t_min) / third_of_estimated_period], ϖ + M), - .p = tg_½i * sin_Ω, - .q = tg_½i * cos_Ω, - .pʹ = cotg_½i * sin_Ω, - .qʹ = cotg_½i * cos_Ω}; + .p = tg_iⳆ2 * sin_Ω, + .q = tg_iⳆ2 * cos_Ω, + .pʹ = cotg_iⳆ2 * sin_Ω, + .qʹ = cotg_iⳆ2 * cos_Ω}; }; auto const sidereal_period = @@ -453,12 +453,12 @@ OrbitalElements::ToClassicalElements( classical_elements.reserve(equinoctial_elements.size()); for (auto const& equinoctial : equinoctial_elements) { RETURN_IF_STOPPED; - double const tg_½i = Sqrt(Pow<2>(equinoctial.p) + Pow<2>(equinoctial.q)); - double const cotg_½i = + double const tg_iⳆ2 = Sqrt(Pow<2>(equinoctial.p) + Pow<2>(equinoctial.q)); + double const cotg_iⳆ2 = Sqrt(Pow<2>(equinoctial.pʹ) + Pow<2>(equinoctial.qʹ)); Angle const i = - cotg_½i > tg_½i ? 2 * ArcTan(tg_½i) : 2 * ArcTan(1 / cotg_½i); - Angle const Ω = cotg_½i > tg_½i ? ArcTan(equinoctial.p, equinoctial.q) + cotg_iⳆ2 > tg_iⳆ2 ? 2 * ArcTan(tg_iⳆ2) : 2 * ArcTan(1 / cotg_iⳆ2); + Angle const Ω = cotg_iⳆ2 > tg_iⳆ2 ? ArcTan(equinoctial.p, equinoctial.q) : ArcTan(equinoctial.pʹ, equinoctial.qʹ); double const e = Sqrt(Pow<2>(equinoctial.h) + Pow<2>(equinoctial.k)); Angle const ϖ = ArcTan(equinoctial.h, equinoctial.k); diff --git a/numerics/elliptic_integrals.cpp b/numerics/elliptic_integrals.cpp index 90efda9a61..61e33abc0f 100644 --- a/numerics/elliptic_integrals.cpp +++ b/numerics/elliptic_integrals.cpp @@ -1121,9 +1121,9 @@ PolynomialInMonomialBasis const // NOTE(phl): The following polynomials differ slightly from the original code // but they match more closely those in [Fuk11a]. The notation follows // [Fuk11a]. -// A polynomial for B٭X(m) / m. +// A polynomial for B*X(m) / m. PolynomialInMonomialBasis const - fukushima_B٭X_maclaurin(std::make_tuple(-1.0 / 4.0, + fukushima_B𐌟X_maclaurin(std::make_tuple(-1.0 / 4.0, -1.0 / 32.0, -3.0 / 256.0, -25.0 / 4096.0, @@ -1280,7 +1280,7 @@ void FukushimaEllipticBD(double const mc, Angle& B_m, Angle& D_m) { B_m = (X_mc * (EX_mc - mc * KX_mc) + one_over_two_KX_mc) * Radian / m; D_m = X_mc * KX_mc * Radian - B_m; } else if (m <= 0.01) { - B_m = (-π * Radian) * fukushima_B٭X_maclaurin(m); + B_m = (-π * Radian) * fukushima_B𐌟X_maclaurin(m); D_m = (π * Radian) * fukushima_EX_maclaurin(m); } else if (m <= 0.1) { double const mx = 0.95 - mc;