-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvae_plot.py
executable file
·45 lines (37 loc) · 1.03 KB
/
vae_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#!/usr/bin/python3
import torch
import numpy as np
import matplotlib.pyplot as plt
import math
import data_loader
import vae as V
def main():
vae = V.VariationalAutoEncoder()
vae.load_state_dict( torch.load( 'vae.pt', map_location='cpu' ) )
vae.train( False )
inputs200 = data_loader.load_file( 're200.dat' )
mu, logvar = vae.encode( inputs200 )
x_mu = vae.decode( mu )
error = (x_mu - inputs200).pow(2)
error_mean = error.mean( dim=(1,2,3) )
error_max = torch.max( error, dim=3 ).values
error_max = torch.max( error_max, dim=2 ).values
error_max = torch.max( error_max, dim=1 ).values
error_max = error_max.sqrt()
# torch.max( error, dim=(1,2,3) )
print( error_mean )
print( error_max )
plt.imshow( mu.detach().numpy() )
plt.colorbar()
plt.title( 'mu' )
plt.show()
plt.imshow( np.exp(0.5*logvar.detach().numpy()) )
plt.colorbar()
plt.title( 'sigma' )
plt.show()
plt.imshow( x_mu[100,0].detach().numpy() )
plt.colorbar()
plt.title( 'x_mu' )
plt.show()
if __name__ == '__main__':
main()