-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustomAlgorithm.py
126 lines (100 loc) · 3.55 KB
/
customAlgorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import numpy as np
import cv2 as cv
from ipywidgets import fixed, interact
def yuv_in_range_filter(frame, lower_y, lower_u, lower_v, upper_y, upper_u, upper_v):
from matplotlib import pyplot as plt
plt.figure(figsize=(9, 9))
plt.subplot(1, 1, 1)
plt.imshow(
cv.inRange(
frame,
np.array([lower_y, lower_u, lower_v]),
np.array([upper_y, upper_u, upper_v]),
)
)
plt.title("YUV RANGE FILTER")
def rgb_in_range_filter(frame, lower_r, lower_g, lower_b, upper_r, upper_g, upper_b):
from matplotlib import pyplot as plt
plt.figure(figsize=(9, 9))
plt.subplot(1, 1, 1)
plt.imshow(
cv.inRange(
frame,
np.array([lower_r, lower_g, lower_b]),
np.array([upper_r, upper_g, upper_b]),
)
)
plt.title("RGB RANGE FILTER")
def rgb_colour_segmentation(frame):
rgbImg = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
interact(
rgb_in_range_filter,
frame=fixed(rgbImg),
lower_r=(0, 255, 1),
lower_g=(0, 255, 1),
lower_b=(0, 255, 1),
upper_r=(0, 255, 1),
upper_g=(0, 255, 1),
upper_b=(0, 255, 1),
)
return frame
def multiSpaceSegmentation(img):
"""Convert the image into the yuv and rgb colour spaces,
and threshold the two copies using inRange with harcoded
values (found thanks to interactive functions like the one
above). Obtain the thresholded/segmented image by combining
the two copies.
The two colour spaces extract in better ways different parts
of the interested regions, so merging them returns a good
segmentation.
Args:
img (numpy array): input image.
Returns:
numpy array: segmented image.
"""
# Convert to rgb from bgr
rgbImg = cv.cvtColor(img, cv.COLOR_BGR2RGB)
# Convert to yuv from bgr
yuvImg = cv.cvtColor(img, cv.COLOR_BGR2YUV)
# The following lower and upper values extract the best
# possible appearance of the object, but not the entire table.
rgbRanged = cv.inRange(
rgbImg,
np.array([105, 0, 0]),
np.array([255, 255, 255]),
)
# The following lower and upper values extract the best
# table contours.
yuvRanged = cv.inRange(
yuvImg,
np.array([24, 16, 118]),
np.array([255, 255, 255]),
)
# Add the two filtered images, to obtain a full representation
# of the object and the table.
rgbYuvAddition = cv.add(rgbRanged, yuvRanged)
# Maximize the intensity for every non-zero intensity.
rgbYuvAddition[rgbYuvAddition > 0] = 255
# Fill the background with an intensity of 50, in order
# to make it distinguishable from the object, the table
# and the space under the table.
cv.floodFill(
rgbYuvAddition,
None,
seedPoint=(0, 0),
newVal=(50, 0, 0),
loDiff=(0, 0, 0, 0),
upDiff=(0, 0, 0, 0),
)
# Make the distinction between the background with intensity 50
# and the rest.
rgbYuvAddition[rgbYuvAddition != 50] = 255
# The Open operation will remove any noise, which I usually found
# on the background of the last 2 objects.
rgbYuvAddition = cv.morphologyEx(
rgbYuvAddition, cv.MORPH_OPEN, np.ones((3, 3)), iterations=4
)
# Use the found regions to segment the original image.
img[rgbYuvAddition == 50] = (0, 0, 0)
img[rgbYuvAddition != 50] = (255, 255, 255)
return img