Skip to content
This repository has been archived by the owner on Sep 21, 2021. It is now read-only.

Latest commit

 

History

History
56 lines (45 loc) · 3.36 KB

35_Relevance_is_broken.asciidoc

File metadata and controls

56 lines (45 loc) · 3.36 KB

Relevance Is Broken!

Before we move on to discussing more-complex queries in [multi-field-search], let’s make a quick detour to explain why we created our test index with just one primary shard.

Every now and again a new user opens an issue claiming that sorting by relevance is broken and offering a short reproduction: the user indexes a few documents, runs a simple query, and finds apparently less-relevant results appearing above more-relevant results.

To understand why this happens, let’s imagine that we create an index with two primary shards and we index ten documents, six of which contain the word foo. It may happen that shard 1 contains three of the foo documents and shard 2 contains the other three. In other words, our documents are well distributed.

In [relevance-intro], we described the default similarity algorithm used in Elasticsearch, called term frequency / inverse document frequency or TF/IDF. Term frequency counts the number of times a term appears within the field we are querying in the current document. The more times it appears, the more relevant is this document. The inverse document frequency takes into account how often a term appears as a percentage of all the documents in the index. The more frequently the term appears, the less weight it has.

However, for performance reasons, Elasticsearch doesn’t calculate the IDF across all documents in the index. Instead, each shard calculates a local IDF for the documents contained in that shard.

Because our documents are well distributed, the IDF for both shards will be the same. Now imagine instead that five of the foo documents are on shard 1, and the sixth document is on shard 2. In this scenario, the term foo is very common on one shard (and so of little importance), but rare on the other shard (and so much more important). These differences in IDF can produce incorrect results.

In practice, this is not a problem. The differences between local and global IDF diminish the more documents that you add to the index. With real-world volumes of data, the local IDFs soon even out. The problem is not that relevance is broken but that there is too little data.

For testing purposes, there are two ways we can work around this issue. The first is to create an index with one primary shard, as we did in the section introducing the match query. If you have only one shard, then the local IDF is the global IDF.

The second workaround is to add ?search_type=dfs_query_then_fetch to your search requests. The dfs stands for Distributed Frequency Search, and it tells Elasticsearch to first retrieve the local IDF from each shard in order to calculate the global IDF across the whole index.

Tip
Don’t use dfs_query_then_fetch in production. It really isn’t required. Just having enough data will ensure that your term frequencies are well distributed. There is no reason to add this extra DFS step to every query that you run.