diff --git a/src/pwtools/signal.py b/src/pwtools/signal.py index c83a60e3..33be460e 100644 --- a/src/pwtools/signal.py +++ b/src/pwtools/signal.py @@ -1,5 +1,5 @@ """ -Some general signal procressing tools (FFT, correlation). Mostly textbook and +Some general signal processing tools (FFT, correlation). Mostly textbook and reference implementations plus some utilities. """ @@ -404,9 +404,9 @@ def acorr(v, method=7, norm=True): The x-axis is the offset "t" (or "lag" in Digital Signal Processing lit.). Since the ACF is symmetric around t=0, we return only t=0...len(v)-1 . - Several Python and Fortran implememtations. The Python versions are mostly + Several Python and Fortran implementations. The Python versions are mostly for reference and are slow, except for fft-based, which is by far the - fastet. + fastest. Parameters ---------- @@ -485,7 +485,7 @@ def acorr(v, method=7, norm=True): return _flib.acorr(v, c, 2, _norm) elif method == 7: # Correlation via fft. After ifft, the imaginary part is (in theory) = - # 0, in practise < 1e-16, so we are safe to return the real part only. + # 0, in practice < 1e-16, so we are safe to return the real part only. vv = np.concatenate((v, np.zeros((nstep,),dtype=float))) c = ifft(np.abs(fft(vv))**2.0)[:nstep].real else: @@ -586,11 +586,11 @@ def smooth(data, kern, axis=0, edge='m', norm=True): Uses ``scipy.signal.fftconvolve()``. - Note: This function is actually a specical case of + Note: This function is actually a special case of ``scipy.ndimage.convolve()``, so you may also use that. See the Notes section below for details. - Note that due to edge effect handling (padding) and kernal normalization, + Note that due to edge effect handling (padding) and kernel normalization, the convolution identity convolve(data,kern) == convolve(kern,data) doesn't apply here. We always return an array of ``data.shape``. @@ -752,7 +752,7 @@ def smooth(data, kern, axis=0, edge='m', norm=True): >>> kern = scipy.signal.hann(101) >>> ret = scipy.signal.fftconvolve(arr, kern[:,None,None]) - Then it is better to loop over some or all of the remaing dimensions:: + Then it is better to loop over some or all of the remaining dimensions:: >>> ret = np.empty_like(arr) >>> for jj in range(arr.shape[1]): @@ -764,7 +764,7 @@ def smooth(data, kern, axis=0, edge='m', norm=True): >>> for kk in range(arr.shape[2]): >>> ret[:,jj,kk] = smooth(arr[:,jj,kk], kern) - The size of the chunk over which you explicitely loop depends on the data + The size of the chunk over which you explicitly loop depends on the data of course. We do exactly this in :func:`pwtools.crys.smooth`. """ # edge = 'm' @@ -838,7 +838,7 @@ def smooth(data, kern, axis=0, edge='m', norm=True): def odd(n, add=1): """Return next odd integer to `n`. - Can be used to construt odd smoothing kernels in :func:`smooth`. + Can be used to construct odd smoothing kernels in :func:`smooth`. Parameters ---------- @@ -922,7 +922,7 @@ def __init__(self, cutoff, nyq, ntaps=None, ripple=None, width=None, window : string or tuple of string and parameter values Desired window to use. See `scipy.signal.get_window` for a list of windows and required parameters. Default is "hamming". Ignored - if `width` and `ripple` givem b/c then ``kaiserord`` is used to + if `width` and `ripple` given b/c then ``kaiserord`` is used to build a Kaiser window. mode : str 'lowpass', 'highpass', 'bandpass', 'bandstop'