diff --git a/src/pwtools/signal.py b/src/pwtools/signal.py index 3a3af11e..df2b4b07 100644 --- a/src/pwtools/signal.py +++ b/src/pwtools/signal.py @@ -6,8 +6,7 @@ from itertools import product import numpy as np from scipy.fftpack import fft, ifft -from scipy.signal import fftconvolve, gaussian, kaiserord, firwin, lfilter, freqz -from scipy.integrate import trapz +from scipy.signal import fftconvolve, kaiserord, firwin, lfilter, freqz from pwtools import _flib, num @@ -300,7 +299,7 @@ def pad_zeros(arr, axis=0, where='end', nadd=None, upto=None, tonext=None, def welch(M, sym=1): """Welch window. Function skeleton shamelessly stolen from - scipy.signal.bartlett() and others.""" + scipy.signal.windows.bartlett() and others.""" if M < 1: return np.array([]) if M == 1: @@ -316,7 +315,7 @@ def welch(M, sym=1): def lorentz(M, std=1.0, sym=True): r"""Lorentz window (same as Cauchy function). Function skeleton stolen from - scipy.signal.gaussian(). + scipy.signal.windows.gaussian(). The Lorentz function is @@ -621,35 +620,37 @@ def smooth(data, kern, axis=0, edge='m', norm=True): Examples -------- - >>> from pwtools.signal import welch + >>> from pwtools.signal import welch, smooth >>> from numpy.random import rand + >>> from scipy.signal.windows import hann, gaussian + >>> from scipy.signal import convolve >>> x = linspace(0,2*pi,500); a=cos(x)+rand(500) >>> plot(a, color='0.7') - >>> k=scipy.signal.hann(21) - >>> plot(signal.smooth(a,k), 'r', label='hann') - >>> k=scipy.signal.gaussian(21, 3) - >>> plot(signal.smooth(a,k), 'g', label='gauss') + >>> k=hann(21) + >>> plot(smooth(a,k), 'r', label='hann') + >>> k=gaussian(21, 3) + >>> plot(smooth(a,k), 'g', label='gauss') >>> k=welch(21) - >>> plot(signal.smooth(a,k), 'y', label='welch') + >>> plot(smooth(a,k), 'y', label='welch') >>> legend() >>> # odd kernel [0,1,0] reproduces data exactly, i.e. convolution with >>> # delta peak >>> figure(); title('smooth with delta [0,1,0]') >>> x=linspace(0,2*pi,15); k=scipy.signal.hann(3) >>> plot(cos(x)) - >>> plot(signal.smooth(cos(x),k), 'r') + >>> plot(smooth(cos(x),k), 'r') >>> legend() >>> # edge effects with normal convolution >>> figure(); title('edge effects') - >>> x=rand(20)+10; k=scipy.signal.hann(11); - >>> plot(x); plot(signal.smooth(x,k),label="smooth"); - >>> plot(scipy.signal.convolve(x,k/k.sum(),'same'), label='convolve') + >>> x=rand(20)+10; k=hann(11); + >>> plot(x); plot(smooth(x,k),label="smooth"); + >>> plot(convolve(x,k/k.sum(),'same'), label='convolve') >>> legend() >>> # edge effect methods >>> figure(); title('edge effect methods') - >>> x=rand(20)+10; k=scipy.signal.hann(20); - >>> plot(x); plot(signal.smooth(x,k,edge='m'),label="edge='m'"); - >>> plot(signal.smooth(x,k,edge='c'),label="edge='c'"); + >>> x=rand(20)+10; k=hann(20); + >>> plot(x); plot(smooth(x,k,edge='m'),label="edge='m'"); + >>> plot(smooth(x,k,edge='c'),label="edge='c'"); >>> legend() >>> # smooth a trajectory of atomic coordinates >>> figure(); title('trajectory') @@ -657,8 +658,8 @@ def smooth(data, kern, axis=0, edge='m', norm=True): >>> a = rand(500,2,3) # (nstep, natoms, 3) >>> a[:,0,:] += cos(x)[:,None] >>> a[:,1,:] += sin(x)[:,None] - >>> k=scipy.signal.hann(21)[:,None,None] - >>> y = signal.smooth(a,k) + >>> k=hann(21)[:,None,None] + >>> y = smooth(a,k) >>> plot(a[:,0,0], color='0.7'); plot(y[:,0,0],'b', ... label='atom1 x') >>> plot(a[:,1,0], color='0.7'); plot(y[:,1,0],'r', diff --git a/test/test_signal.py b/test/test_signal.py index 89971794..3c632b89 100644 --- a/test/test_signal.py +++ b/test/test_signal.py @@ -1,5 +1,5 @@ import numpy as np -from scipy.signal import gaussian +from scipy.signal.windows import gaussian from pwtools.signal import gauss, find_peaks, smooth, fft_1d_loop, ezfft from pwtools import signal from scipy.fftpack import fft