forked from ericwhyne/darpa_open_catalog
-
Notifications
You must be signed in to change notification settings - Fork 0
/
XDATA-software.json
4803 lines (4803 loc) · 152 KB
/
XDATA-software.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
[
{
"DARPA Program":"XDATA",
"Program Teams":[
"Boeing",
"University of Pittsburgh"
],
"Contributors":[
""
],
"Sub-contractors":[
""
],
"Software":"SMILE-WIDE: A scalable Bayesian network library",
"Internal Link":"https://xd-wiki.xdata.data-tactics-corp.com:8443/display/ANL/Boeing+-+Pitt",
"External Link":"http://smilewide.github.io/main/",
"Public Code Repo":"https://github.com/SmileWide/main.git",
"Instructional Material":"",
"Stats":"main",
"Description":"SMILE-WIDE is a scalable Bayesian network library. Initially, it is a version of the SMILE library, as in SMILE With Integrated Distributed Execution. The general approach has been to provide an API similar to the existing API SMILE developers use to build \"local,\" single-threaded applications. However, we provide \"vectorized\" operations that hide a Hadoop-distributed implementation. Apart from invoking a few idioms like generic Hadoop command line argument parsing, these appear to the developer as if they were executed locally. (Java)",
"Internal Code Repo":"tools\\analytics\\boeing-pitt\\smile-wide-final-summercamp",
"License":[
"ALv2"
],
"Languages":[
"Java"
],
"Platform Requirements":[
""
],
"Dependent modules":[
""
],
"Dependent module URLs":[
""
],
"Component modules":[
""
],
"Component module URLs":[
""
],
"Industry":[
""
],
"Functionality":[
""
],
"Categories":[
"Analytics"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"XDATA",
"Program Teams":[
"Aptima, Inc."
],
"Contributors":[
""
],
"Sub-contractors":[
""
],
"Software":"Network Query by Example",
"Internal Link":"",
"External Link":"https://github.com/Aptima/pattern-matching",
"Public Code Repo":"https://github.com/Aptima/pattern-matching.git",
"Instructional Material":"Not Available",
"Stats":"pattern-matching",
"Description":"Hadoop MapReduce-over-Hive based implementation of network query by example utilizing attributed network pattern matching. (Java)",
"Internal Code Repo":"",
"License":[
"ALv2"
],
"Languages":[
"Java"
],
"Platform Requirements":[
""
],
"Dependent modules":[
""
],
"Dependent module URLs":[
""
],
"Component modules":[
""
],
"Component module URLs":[
""
],
"Industry":[
""
],
"Functionality":[
""
],
"Categories":[
"Analytics"
],
"New Date":"",
"Update Date":"20140820"
},
{
"DARPA Program":"XDATA",
"Program Teams":[
"Carnegie Mellon University"
],
"Contributors":[
""
],
"Sub-contractors":[
""
],
"Software":"skl-groups",
"Internal Link":"https://xd-wiki.xdata.data-tactics-corp.com:8443/pages/viewpage.action?pageId=6717624",
"External Link":"https://github.com/dougalsutherland/skl-groups/",
"Public Code Repo":"https://github.com/dougalsutherland/skl-groups.git",
"Instructional Material":"https://dougalsutherland.github.io/skl-groups/",
"Stats":"skl-groups",
"Description":"A package extending the Python machine learning toolkit scikit-learn with support for operating on sets (\"groups\") as features.",
"Internal Code Repo":"tools\\analytics\\cmu",
"License":[
"BSD"
],
"Languages":[
"Python"
],
"Platform Requirements":[
""
],
"Dependent modules":[
""
],
"Dependent module URLs":[
""
],
"Component modules":[
""
],
"Component module URLs":[
""
],
"Industry":[
""
],
"Functionality":[
""
],
"Categories":[
"Analytics"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"XDATA",
"Program Teams":[
"Continuum Analytics"
],
"Contributors":[
""
],
"Sub-contractors":[
""
],
"Software":"Blaze",
"Internal Link":"https://xd-wiki.xdata.data-tactics-corp.com:8443/display/VIS/Continuum+Analytics+Home+Page",
"External Link":"https://github.com/ContinuumIO/blaze",
"Public Code Repo":"https://github.com/ContinuumIO/blaze.git",
"Instructional Material":"http://blaze.pydata.org/docs/",
"Stats":"blaze",
"Description":"Blaze is the next-generation of NumPy. It is designed as a foundational set of abstractions on which to build out-of-core and distributed algorithms over a wide variety of data sources and to extend the structure of NumPy itself. Blaze allows easy composition of low level computation kernels (C, Fortran, Numba) to form complex data transformations on large datasets. In Blaze, computations are described in a high-level language (Python) but executed on a low-level runtime (outside of Python), enabling the easy mapping of high-level expertise to data without sacrificing low-level performance. Blaze aims to bring Python and NumPy into the massively-multicore arena, allowing it to leverage many CPU and GPU cores across computers, virtual machines and cloud services. (Python)",
"Internal Code Repo":"tools\\analytics\\continuum\\blaze",
"License":[
"BSD"
],
"Languages":[
"Python"
],
"Platform Requirements":[
""
],
"Dependent modules":[
""
],
"Dependent module URLs":[
""
],
"Component modules":[
""
],
"Component module URLs":[
""
],
"Industry":[
""
],
"Functionality":[
""
],
"Categories":[
"Infrastructure"
],
"New Date":"",
"Update Date":"20140620"
},
{
"DARPA Program":"XDATA",
"Program Teams":[
"Continuum Analytics"
],
"Contributors":[
""
],
"Sub-contractors":[
""
],
"Software":"Numba",
"Internal Link":"https://xd-wiki.xdata.data-tactics-corp.com:8443/display/VIS/Continuum+Analytics+Home+Page",
"External Link":"https://github.com/numba/numba",
"Public Code Repo":"https://github.com/numba/numba.git",
"Instructional Material":"http://numba.pydata.org/",
"Stats":"numba",
"Description":"Numba is an Open Source NumPy-aware optimizing compiler for Python sponsored by Continuum Analytics, Inc. It uses the LLVM compiler infrastructure to compile Python syntax to machine code.<br/><br/>It is aware of NumPy arrays as typed memory regions and so can speed-up code using NumPy arrays. Other, less well-typed code is translated to Python C-API calls effectively removing the \"interpreter\" but not removing the dynamic indirection.<br/><br/>Numba is also not a tracing just in time (JIT) compiler. It compiles your code before it runs either using run-time type information or type information you provide in the decorator.<br/><br/>Numba is a mechanism for producing machine code from Python syntax and typed data structures such as those that exist in NumPy. (Python)",
"Internal Code Repo":"tools\\analytics\\continuum\\numba",
"License":[
"BSD"
],
"Languages":[
"Python"
],
"Platform Requirements":[
""
],
"Dependent modules":[
""
],
"Dependent module URLs":[
""
],
"Component modules":[
""
],
"Component module URLs":[
""
],
"Industry":[
""
],
"Functionality":[
""
],
"Categories":[
"Infrastructure"
],
"New Date":"",
"Update Date":"20140620"
},
{
"DARPA Program":"XDATA",
"Program Teams":[
"Continuum Analytics"
],
"Contributors":[
""
],
"Sub-contractors":[
""
],
"Software":"Bokeh",
"Internal Link":"https://xd-wiki.xdata.data-tactics-corp.com:8443/display/VIS/Continuum+Analytics+Home+Page",
"External Link":"http://bokeh.pydata.org",
"Public Code Repo":"https://github.com/ContinuumIO/bokeh.git",
"Instructional Material":"http://bokeh.pydata.org",
"Stats":"bokeh",
"Description":"Bokeh (pronounced bo-Kay or bo-Kuh) is a Python interactive visualization library for large datasets that natively uses the latest web technologies. Its goal is to provide elegant, concise construction of novel graphics in the style of Protovis/D3, while delivering high-performance interactivity over large data to thin clients. (Python/JavaScript/Coffeescript)",
"Internal Code Repo":"tools/visualization/continuum/bokeh; tools/visualization/continuum/bokehjs",
"License":[
"BSD"
],
"Languages":[
"Python",
"JavaScript",
"Coffeescript"
],
"Platform Requirements":[
""
],
"Dependent modules":[
""
],
"Dependent module URLs":[
""
],
"Component modules":[
""
],
"Component module URLs":[
""
],
"Industry":[
""
],
"Functionality":[
""
],
"Categories":[
"Visualization"
],
"New Date":"",
"Update Date":"20140620"
},
{
"DARPA Program":"XDATA",
"Program Teams":[
"Data Tactics Corporation"
],
"Contributors":[
""
],
"Sub-contractors":[
""
],
"Software":"Vowpal Wabbit",
"Internal Link":"https://xd-wiki.xdata.data-tactics-corp.com:8443/display/ANL/Cloud+Analytics+for+Structure+Extractions+%28CASE%29+Group",
"External Link":"https://github.com/JohnLangford/vowpal_wabbit",
"Public Code Repo":"https://github.com/JohnLangford/vowpal_wabbit.git",
"Instructional Material":"",
"Stats":"vowpal_wabbit",
"Description":"The Vowpal Wabbit (VW) project is a fast out-of-core learning system sponsored by Microsoft Research and (previously) Yahoo! Research. Support is available through the mailing list. There are two ways to have a fast learning algorithm: (a) start with a slow algorithm and speed it up, or (b) build an intrinsically fast learning algorithm. This project is about approach (b), and it's reached a state where it may be useful to others as a platform for research and experimentation. There are several optimization algorithms available with the baseline being sparse gradient descent (GD) on a loss function (several are available). The code should be easily usable. Its only external dependence is on the boost library, which is often installed by default. (C)",
"Internal Code Repo":"tools\\analytics\\dt",
"License":[
"BSD"
],
"Languages":[
"C"
],
"Platform Requirements":[
""
],
"Dependent modules":[
""
],
"Dependent module URLs":[
""
],
"Component modules":[
""
],
"Component module URLs":[
""
],
"Industry":[
""
],
"Functionality":[
""
],
"Categories":[
"Visualization"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"XDATA",
"Program Teams":[
"Data Tactics Corporation"
],
"Contributors":[
""
],
"Sub-contractors":[
""
],
"Software":"Darpa Open Catalog Generator",
"Internal Link":"",
"External Link":"https://github.com/ericwhyne/open-catalog-generator",
"Public Code Repo":"https://github.com/ericwhyne/open-catalog-generator.git",
"Instructional Material":"",
"Stats":"open-catalog-generator",
"Description":"Code and templates for building the DARPA open catalog as hosted on darpa.mil.",
"Internal Code Repo":"",
"License":[
"ALv2"
],
"Languages":[
"Python"
],
"Platform Requirements":[
""
],
"Dependent modules":[
""
],
"Dependent module URLs":[
""
],
"Component modules":[
""
],
"Component module URLs":[
""
],
"Industry":[
""
],
"Functionality":[
""
],
"Categories":[
"Analytics"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"XDATA",
"Program Teams":[
"Data Tactics Corporation"
],
"Contributors":[
""
],
"Sub-contractors":[
""
],
"Software":"Circuit",
"Internal Link":"",
"External Link":"http://www.gocircuit.org/",
"Public Code Repo":"https://github.com/gocircuit/circuit.git",
"Instructional Material":"",
"Stats":"circuit",
"Description":"Circuit reduces the human development and sustenance costs of complex massively-scaled systems nearly to the level of their single-process counterparts. It is a combination of proven ideas from the Erlang ecosystem of distributed embedded devices and Go's ecosystem of Internet application development. Circuit extends the reach of Go's linguistic environment to multi-host/multi-process applications. (Go)",
"Internal Code Repo":"",
"License":[
"ALv2"
],
"Languages":[
"Go"
],
"Platform Requirements":[
""
],
"Dependent modules":[
""
],
"Dependent module URLs":[
""
],
"Component modules":[
""
],
"Component module URLs":[
""
],
"Industry":[
""
],
"Functionality":[
""
],
"Categories":[
"Infrastructure"
],
"New Date":"",
"Update Date":"20140612"
},
{
"DARPA Program":"XDATA",
"Program Teams":[
"Georgia Tech / GTRI"
],
"Contributors":[
""
],
"Sub-contractors":[
""
],
"Software":"SmallK: A high-performance library for nonnegative matrix factorization and hierarchical clustering",
"Internal Link":"https://xd-wiki.xdata.data-tactics-corp.com:8443/pages/viewpage.action?pageId=7274597",
"External Link":"https://github.com/smallk/smallk.github.io.git",
"Public Code Repo":"https://github.com/smallk/smallk.github.io.git",
"Instructional Material":"http://smallk.github.io/",
"Stats":"smallk.github.io",
"Description":"SmallK is a high-performance, parallel library for nonnegative matrix factorization on both dense and sparse matrices written in C++. Implementations of several different NMF algorithms are provided, including multiplicative updating, hierarchical alternating least squares, nonnegative least squares with block principal pivoting, and a new rank2 algorithm. The library provides an implementation of hierarchical clustering based on the rank2 NMF algorithm. (C++)",
"Internal Code Repo":"tools\\analytics\\gatech\\_x000D_\n",
"License":[
"ALv2"
],
"Languages":[
""
],
"Platform Requirements":[
""
],
"Dependent modules":[
""
],
"Dependent module URLs":[
""
],
"Component modules":[
""
],
"Component module URLs":[
""
],
"Industry":[
""
],
"Functionality":[
""
],
"Categories":[
"Analytics"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program": "XDATA",
"Program Teams": ["Giant Oak, Inc."],
"Contributors": ["Dr. W. Graham Mueller"],
"Sub-contractors": [""],
"Software": "Markov modulated Poisson process for event detection (MMPP)",
"Internal Link": "",
"External Link": "https://github.com/giantoak/MMPP",
"Public Code Repo": "https://github.com/giantoak/MMPP.git",
"Instructional Material": "http://giantoak.github.io/MMPP_Tutorial/",
"Stats": "MMPP",
"Description": "Markov Modulated Poisson Process for Event Detection allows R users to accurately detect unusual events and anomalies in time series of counts.",
"Internal Code Repo": "",
"License": ["GPLv2"],
"Languages": ["R"],
"Platform Requirements": [""],
"Dependent modules": [""],
"Dependent module URLs": [""],
"Component modules": [""],
"Component module URLs": [""],
"Industry": [""],
"Functionality": [""],
"Categories": ["Analytics"],
"New Date": "",
"Update Date": "20151221"
},
{
"DARPA Program": "XDATA",
"Program Teams": ["Giant Oak, Inc."],
"Contributors": [""],
"Sub-contractors": [""],
"Software": "Markov modulated Poisson process for event detection (MMPP)",
"Internal Link": "",
"External Link": "https://github.com/giantoak/mmpp_julia",
"Public Code Repo": "https://github.com/giantoak/mmpp_julia.git",
"Instructional Material": "",
"Stats": "MMPP_j",
"Description": "Markov Modulated Poisson Process for Event Detection allows R users to accurately detect unusual events and anomalies in time series of counts.",
"Internal Code Repo": "",
"License": ["GPLv2"],
"Languages": ["Julia"],
"Platform Requirements": [""],
"Dependent modules": [""],
"Dependent module URLs": [""],
"Component modules": [""],
"Component module URLs": [""],
"Industry": [""],
"Functionality": [""],
"Categories": ["Analytics"],
"New Date": "",
"Update Date": "20151221"
},
{
"DARPA Program": "XDATA",
"Program Teams": ["Giant Oak, Inc."],
"Contributors": ["Dr. W. Graham Mueller"],
"Sub-contractors": [""],
"Software": "Markov modulated Poisson process for event detection (MMPP)",
"Internal Link": "",
"External Link": "https://github.com/giantoak/mmppr",
"Public Code Repo": "https://github.com/giantoak/mmppr.git",
"Instructional Material": "http://giantoak.github.io/MMPP_Tutorial/",
"Stats": "MMPP_r",
"Description": "Markov Modulated Poisson Process for Event Detection allows R users to accurately detect unusual events and anomalies in time series of counts.",
"Internal Code Repo": "",
"License": ["GPLv2"],
"Languages": ["R"],
"Platform Requirements": [""],
"Dependent modules": [""],
"Dependent module URLs": [""],
"Component modules": [""],
"Component module URLs": [""],
"Industry": [""],
"Functionality": [""],
"Categories": ["Analytics"],
"New Date": "",
"Update Date": "20151221"
},
{
"DARPA Program": "XDATA",
"Program Teams": ["Giant Oak, Inc."],
"Contributors": [""],
"Sub-contractors": [""],
"Software": "Unicorn",
"Internal Link": "",
"External Link": "",
"Public Code Repo": "https://github.com/giantoak/unicorn.git",
"Instructional Material": "",
"Stats": "Unicorn",
"Description": "Unicorn is a document exploitation tool. A given installation can be used to: ingest free text corpora (e.g. Documents, Scans, and PDFs) into an Elasticsearch document store; query the documents via a Javascript GUI to find different salient features, topics, co-occurances; and visualize the results of those queries.\nThe tool here works best with long-form, free text documents, but can be adapted as needed for other formats.",
"Internal Code Repo": "",
"License": ["MIT"],
"Languages": ["Python", "SQL", "bash", "JavaScript"],
"Platform Requirements": [""],
"Dependent modules": [""],
"Dependent module URLs": [""],
"Component modules": [""],
"Component module URLs": [""],
"Industry": [""],
"Functionality": [""],
"Categories": ["Analytics"],
"New Date": "20151222",
"Update Date": ""
},
{
"DARPA Program":"XDATA",
"Program Teams":[
"Stanford"
],
"Contributors":[
"Jack Poulson"
],
"Sub-contractors":[
""
],
"Software":"Elemental: Distributed-memory dense and sparse-direct linear algebra, Interior Point Methods, and lattice reduction",
"Internal Link":"",
"External Link":"http://libelemental.org",
"Public Code Repo":"https://github.com/elemental/Elemental.git",
"Instructional Material":"",
"Stats":"Elemental",
"Description":"Elemental is a modern distributed-memory (C++11/MPI) library for dense and sparse-direct linear algebra, Interior Point Methods, and lattice reduction",
"Internal Code Repo":"",
"License":[
"New BSD"
],
"Languages":[
"C++",
"C",
"Fortran",
"Python"
],
"Platform Requirements":[
"MPI"
],
"Dependent modules":[
""
],
"Dependent module URLs":[
""
],
"Component modules":[
""
],
"Component module URLs":[
""
],
"Industry":[
""
],
"Functionality":[
""
],
"Categories":[
"Analytics"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"XDATA",
"Program Teams":[
"IBM Research"
],
"Contributors":[
""
],
"Sub-contractors":[
""
],
"Software":"SKYLARK: Randomized Numerical Linear Algebra and ML",
"Internal Link":"https://xd-wiki.xdata.data-tactics-corp.com:8443/pages/viewpage.action?pageId=2752591",
"External Link":"http://xdata-skylark.github.io/libskylark/",
"Public Code Repo":"https://github.com/xdata-skylark/libskylark.git",
"Instructional Material":"",
"Stats":"libskylark",
"Description":"SKYLARK implements Numerical Linear Algebra (NLA) kernels based on sketching for distributed computing platforms. Sketching reduces dimensionality through randomization, and includes Johnson-Lindenstrauss random projection (JL); a faster version of JL based on fast transform techniques; sparse techniques that can be applied in time proportional to the number of nonzero matrix entries; and methods for approximating kernel functions and Gram matrices arising in nonlinear statistical modeling problems. We have a library of such sketching techniques, built using MPI in C++ and callable from Python, and are applying the library to regression, low-rank approximation, and kernel-based machine learning tasks, among other problems. (C++/Python)",
"Internal Code Repo":"tools\\analytics\\ibm\\skylark",
"License":[
"ALv2"
],
"Languages":[
"C++",
"Python"
],
"Platform Requirements":[
""
],
"Dependent modules":[
""
],
"Dependent module URLs":[
""
],
"Component modules":[
""
],
"Component module URLs":[
""
],
"Industry":[
""
],
"Functionality":[
""
],
"Categories":[
"Analytics"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"XDATA",
"Program Teams":[
"Institute for Creative Technologies",
"USC"
],
"Contributors":[
""
],
"Sub-contractors":[
""
],
"Software":"Immersive Body-Based Interactions",
"Internal Link":"https://xd-wiki.xdata.data-tactics-corp.com:8443/pages/viewpage.action?pageId=7274668",
"External Link":"",
"Public Code Repo":"http://code.google.com/p/svnmimir/source/checkout",
"Instructional Material":"Not Available",
"Stats":"immersive_body-based_interactions",
"Description":"Provides innovative interaction techniques to address human-computer interaction challenges posed by Big Data. Examples include:<br>* Wiggle Interaction Technique: user-induced motion to speed visual search.<br>* Immersive Tablet Based Viewers: low-cost 3D virtual reality fly-throughs of data sets.<br>* Multi-touch interfaces: browsing/querying multi-attribute and geospatial data, hosted by SOLR.<br>* Tablet-based visualization controller: eye-free rapid interaction with visualizations.",
"Internal Code Repo":"tools\\visualizations\\usc-ict",
"License":[
"ALv2"
],
"Languages":[
""
],
"Platform Requirements":[
""
],
"Dependent modules":[
""
],
"Dependent module URLs":[
""
],
"Component modules":[
""
],
"Component module URLs":[
""
],
"Industry":[
""
],
"Functionality":[
""
],
"Categories":[
"Visualization"
],
"New Date":"",
"Update Date":"20140820"
},
{
"DARPA Program":"XDATA",
"Program Teams":[
"USC"
],
"Contributors":[
""
],
"Sub-contractors":[
""
],
"Software":"Parallel Louvain Community",
"Internal Link":"",
"External Link":"https://github.com/usc-cloud/parallel-louvain-modularity",
"Public Code Repo":"https://github.com/usc-cloud/parallel-louvain-modularity.git",
"Instructional Material":"https://github.com/usc-cloud/parallel-louvain-modularity/blob/master/README.md",
"Stats":"parallel-louvain-modularity",
"Description":"Fast MPI based parallel Louvain community detection algorithm easily mappable to Map Reduce.",
"Internal Code Repo":"",
"License":[
"ALv2"
],
"Languages":[
""
],
"Platform Requirements":[
""
],
"Dependent modules":[
""
],
"Dependent module URLs":[
""
],
"Component modules":[
""
],
"Component module URLs":[
""
],
"Industry":[
""
],
"Functionality":[
""
],
"Categories":[
"Analytics"
],
"New Date":"20140613",
"Update Date":""
},
{
"DARPA Program":"XDATA",
"Program Teams":[
"USC"
],
"Contributors":[
""
],
"Sub-contractors":[
""
],
"Software":"Parallel High Betweenness Nodes identification",
"Internal Link":"",
"External Link":"https://github.com/usc-cloud/parallel-high-betweenness-centrality",
"Public Code Repo":"https://github.com/usc-cloud/parallel-high-betweenness-centrality.git",
"Instructional Material":"https://github.com/usc-cloud/parallel-high-betweenness-centrality/blob/master/README.md",
"Stats":"parallel-high-betweenness-centrality",
"Description":"Fast MPI based high betweenness centrality identification algorithm extendible to cloud graph processing platforms such as Giraph++ or GoFFish.",
"Internal Code Repo":"",
"License":[
"ALv2"
],
"Languages":[
""
],
"Platform Requirements":[
""
],
"Dependent modules":[
""
],
"Dependent module URLs":[
""
],
"Component modules":[
""
],
"Component module URLs":[
""
],
"Industry":[
""
],
"Functionality":[
""
],
"Categories":[
"Analytics"
],
"New Date":"20140613",
"Update Date":""
},
{
"DARPA Program":"XDATA",
"Program Teams":[
"Johns Hopkins University"
],
"Contributors":[
""
],
"Sub-contractors":[
""
],
"Software":"igraph",
"Internal Link":"https://xd-wiki.xdata.data-tactics-corp.com:8443/display/ANL/Johns+Hopkins+University",
"External Link":"https://github.com/igraph/igraph",
"Public Code Repo":"https://github.com/igraph/xdata-igraph.git",
"Instructional Material":"http://igraph.org",
"Stats":"xdata-igraph",
"Description":"igraph is a collection of network analysis tools with the emphasis on efficiency, portability and ease of use. igraph can be programmed in GNU R, Python and C/C++.",
"Internal Code Repo":"tools\\analytics\\jhu",
"License":[
"GPLv2"
],
"Languages":[
"C",
"R",
"Python"
],
"Platform Requirements":[
""
],
"Dependent modules":[
""
],
"Dependent module URLs":[
""
],
"Component modules":[
""
],
"Component module URLs":[
""
],
"Industry":[
""
],
"Functionality":[
""
],
"Categories":[
"Analytics"
],
"New Date":"",
"Update Date":""
},
{
"DARPA Program":"XDATA",
"Program Teams":[
"Trifacta (Stanford, University of Washington, Kitware, Inc. Team)"
],
"Contributors":[
"Trifacta"
],
"Sub-contractors":[
""
],
"Software":"Vega",
"Internal Link":"https://xd-wiki.xdata.data-tactics-corp.com:8443/display/VIS/Visual+Design+Environment-Kitware+Home",
"External Link":"https://github.com/trifacta/vega",
"Public Code Repo":"https://github.com/trifacta/vega.git",
"Instructional Material":"",
"Stats":"vega",
"Description":"Vega is a visualization grammar, a declarative format for creating and saving visualization designs. With Vega you can describe data visualizations in a JSON format, and generate interactive views using either HTML5 Canvas or SVG. (JavaScript)",
"Internal Code Repo":"tools\\visualizations\\kitware\\vega",
"License":[
"BSD"
],
"Languages":[
"JavaScript"
],
"Platform Requirements":[
""
],
"Dependent modules":[
""
],
"Dependent module URLs":[
""
],
"Component modules":[
""
],
"Component module URLs":[
""
],
"Industry":[
""
],
"Functionality":[
""
],
"Categories":[
"Visualization"
],
"New Date":"",
"Update Date":""
},
{