-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathstock_cutter.py
423 lines (331 loc) · 14.1 KB
/
stock_cutter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
'''
@Author Emad Ehsan
Cutting Stock problem 2D
Not complete.
What's remaining: Finding Optimized solution that minimizes the waste.
'''
import collections, json
from ortools.sat.python import cp_model
"""
params
child_rects:
lists of multiple rectangles' coords
e.g.: [ [w, h], [w, h], ...]
parent_rects: rectangle coords
lists of multiple rectangles' coords
e.g.: [ [w, h], [w, h], ...]
"""
def StockCutter(child_rects, parent_rects, output_json=True):
# Create the model
model = cp_model.CpModel()
# parent rect (to cut from). horizon = [ width, height ] of parent sheet
# for now, parent rectangle is just one
# TODO: to add functionality of cutting from multiple parent sheets, start here:
horizon = parent_rects[0]
total_parent_area = horizon[0] * horizon[1] # width x height
# Named Tuple to store information about created variables
sheet_type = collections.namedtuple('sheet_type', 'x1 y1 x2 y2 x_interval y_interval is_extra')
# Store for all model variables
all_vars = {}
# sum of to save area of all small rects, to cut from parent rect
total_child_area = 0
# hold the widths (x) and heights (y) interval vars of each sheet
x_intervals = []
y_intervals = []
# create model vars and intervals
for rect_id, rect in enumerate(child_rects):
width = rect[0]
height = rect[1]
area = width * height
total_child_area += area
# print(f"Rect: {width}x{height}, Area: {area}")
suffix = '_%i_%i' % (width, height)
# interval to represent width. max value can be the width of parent rect
x1_var = model.NewIntVar(0, horizon[0], 'x1' + suffix)
x2_var = model.NewIntVar(0, horizon[0], 'x2' + suffix)
x_interval_var = model.NewIntervalVar(x1_var, width, x2_var, 'x_interval' + suffix)
# interval to represent height. max value can be the height of parent rect
y1_var = model.NewIntVar(0, horizon[1], 'y1' + suffix)
y2_var = model.NewIntVar(0, horizon[1], 'y2' + suffix)
y_interval_var = model.NewIntervalVar(y1_var, height, y2_var, 'y_interval' + suffix)
x_intervals.append(x_interval_var)
y_intervals.append(y_interval_var)
# store the variables for later use
all_vars[rect_id] = sheet_type(
x1=x1_var,
y1=y1_var,
x2=x2_var,
y2=y2_var,
x_interval=x_interval_var,
y_interval=y_interval_var,
is_extra=False # to keep track of 1x1 custom rects added in next step
)
# model.Minimize(x1_var)
# model.Minimize(y1_var)
# TODO: Minimize (x1,y1) values. So that rectangles are placed at the start
# this reduced the areas wasted by place rectangles in the middle / at the end
# even though the space at the start is available.
# >
# for rect_id in range(len(child_rects)):
# model.Minimize(all_vars[rect_id].x1 + all_vars[rect_id].y1)
# model.Minimize(all_vars[rect_id].x2 + all_vars[rect_id].y2)
# model.Minimize(all_vars[rect_id].x1)
# model.Minimize(all_vars[rect_id].x2)
# model.Minimize(all_vars[rect_id].y1)
# model.Minimize(all_vars[rect_id].y2)
'''
FIXME: experiment
Experment: treat the remaining area as small units of 1x1 rectangles. Push these rects to higher x,y.
'''
# leftover_area = total_parent_area - total_child_area
# if leftover_area >= 0:
# '''
# each unit of leftover_area can be represented by 1x1 rectangles.
# For leftover_area = 4 (e.g. 2x2 originally), we can use 4 rects of 1x1. Why? Because
# 1. leftover_area would not always be continous. It is possible it is in the form of two
# separate 2x1 rects or one 2x2 or four rects of 1x1. So we need the simplest version,
# that can cover all types of rects. And it is 1x1
# 2. 1x1 can represent non-adjecent weirdly shaped locations in the parent area that were leftover.
# '''
# num_1x1rects = leftover_area
# for i in range(num_1x1rects):
# print(f'{i}-th 1x1')
# suffix = '_%i_%i' % (1, 1)
# # interval to represent width. max value can be the width of parent rect
# x1_var = model.NewIntVar(0, horizon[0], 'x1' + suffix)
# x2_var = model.NewIntVar(0, horizon[0], 'x2' + suffix)
# x_interval_var = model.NewIntervalVar(x1_var, 1, x2_var, 'x_interval' + suffix)
# # interval to represent height. max value can be the height of parent rect
# y1_var = model.NewIntVar(0, horizon[1], 'y1' + suffix)
# y2_var = model.NewIntVar(0, horizon[1], 'y2' + suffix)
# y_interval_var = model.NewIntervalVar(y1_var, 1, y2_var, 'y_interval' + suffix)
# x_intervals.append(x_interval_var)
# y_intervals.append(y_interval_var)
# # store the variables for later use
# all_vars[rect_id] = sheet_type(
# x1=x1_var,
# y1=y1_var,
# x2=x2_var,
# y2=y2_var,
# x_interval=x_interval_var,
# y_interval=y_interval_var,
# is_extra=True
# )
# model.Maximize(x1_var)
# model.Maximize(y1_var)
# else:
# print(f'Problem identified: Area of small rects is larger than parent rect by {leftover_area}')
# add constraint: no over lap of rectangles allowed
model.AddNoOverlap2D(x_intervals, y_intervals)
# Solve model
solver = cp_model.CpSolver()
'''
Search for all solutions is only defined on satisfiability problems
'''
# solution_printer = VarArraySolutionPrinter(all_vars)
# status = solver.SearchForAllSolutions(model, solution_printer) # use for satisfiability problem
# solutions = solution_printer.get_unique_solutions()
# int_solutions = str_solutions_to_int(solutions)
# output = {
# "statusName": solver.StatusName(status),
# "numSolutions": solution_printer.solution_count(),
# "numUniqueSolutions": len(solutions),
# "solutions": int_solutions # unique solutions
# }
'''
for single solution
'''
status = solver.Solve(model) # use for Optimization Problem
singleSolution = getSingleSolution(solver, all_vars)
int_solutions = [singleSolution] # convert to array
output = {
"statusName": solver.StatusName(status),
"numSolutions": '1',
"numUniqueSolutions": '1',
"solutions": int_solutions # unique solutions
}
print('Time:', solver.WallTime())
print('Status:', output['statusName'])
print('Solutions found :', output['numSolutions'])
print('Unique solutions: ', output['numUniqueSolutions'])
if output_json:
return json.dumps(output)
else:
return int_solutions # integer representation of solutions
'''
This method is used to extract the single solution from the solver.
Because in the case where VarArraySolutionPrinter is not used, the answers are not
yet extracted from the solver. Use this method to extract the solver.
'''
def getSingleSolution(solver, all_vars):
solution = []
# extra coordinates of all rectangles for this solution
for rect_id in all_vars:
rect = all_vars[rect_id]
x1 = solver.Value(rect.x1)
x2 = solver.Value(rect.x2)
y1 = solver.Value(rect.y1)
y2 = solver.Value(rect.y2)
# rect_str = f"{x1},{y1},{x2},{y2}"
coords = [x1, y1, x2, y2];
# print(rect_str)
solution.append(coords)
# print(f'Rect #{rect_id}: {x1},{y1} -> {x2},{y2}')
# print(rect_strs)
# sort the rectangles
# rect_strs = sorted(rect_strs)
# single solution as a string
# solution_str = '-'.join(rect_strs)
return solution
"""
converts from string format to integer values. String format, in previous step, was used
to exclude duplicates.
params:
str_solutions: list of strings. 1 string contains is solution
"""
def str_solutions_to_int(str_solutions):
# list of solutions, each solution is a list of rectangle coords that look like [x1,y1,x2,y2]
int_solutions = []
# go over all solutions and convert them to int>list>json
for idx, sol in enumerate(str_solutions):
# sol is string of coordinates of all rectangles in this solution
# format: x1,y1,x2,y2-x1,y1,x2,y2
rect_strs = sol.split('-')
rect_coords = [
# [x1,y1,x2,y2],
# [x1,y1,x2,y2],
# ...
]
# convert each rectangle's coords to int
for rect_str in rect_strs:
coords_str = rect_str.split(',')
coords = [int(c) for c in coords_str]
rect_coords.append(coords)
# print('rect_coords', rect_coords)
int_solutions.append(rect_coords)
return int_solutions
"""
To get all the solutions of the problem, as they come up.
https://developers.google.com/optimization/cp/cp_solver#all_solutions
The solutions are all unique. But for the child rectangles that have same dimensions,
some solution will be repetitive. Because for the algorithm, they are different solutions,
but because of same size, they are merely permutations of the similar child rectangles -
having other rectangles' positions fixed.
We want to remove repetitive extra solutions. One way to do this is
1. Stringify every rectangle coords in a solution
(1,2)->(2,3) becomes "1,2,2,3"
# here the rectangles are stored as a string: "1,2,2,3" where x1=1, y1=2, x2=2, y2=3
2. Put all these string coords into a sorted list. This sorting is important.
Because the rectangles (1,2)->(2,3) and (3,3)->(4,4) are actually same size (1x1) rectangles.
And they can appear in 1st solution as
[(1,2)->(2,3) , (3,3)->(4,4)]
and in the 2nd solution as
[(3,3)->(4,4) , (1,2)->(2,3)]
but this sorted list of strings will ensure both solutions are represented as
[..., "1,2,2,3", "3,3,4,4", ...]
3. Join the Set of "strings (rectangles)" in to one big string seperated by '-'. For every solution.
So in resulting big strings (solutions), we will have two similar strings (solutions)
that be similar and also contain
"....1,2,2,3-3,3,4,4-...."
4. Now add all these "strings (solutions)" into a Set. this adding to the set
will remove similar strings. And hence duplicate solutions will be removed.
"""
class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback):
def __init__(self, variables):
cp_model.CpSolverSolutionCallback.__init__(self)
self.__variables = variables
self.__solution_count = 0
# hold the calculated solutions
self.__solutions = []
self.__unique_solutions = set()
def on_solution_callback(self):
self.__solution_count += 1
# print('Sol#: ', self.__solution_count)
# using list to hold the coordinate strings of rectangles
rect_strs = []
# extra coordinates of all rectangles for this solution
for rect_id in self.__variables:
rect = self.__variables[rect_id]
x1 = self.Value(rect.x1)
x2 = self.Value(rect.x2)
y1 = self.Value(rect.y1)
y2 = self.Value(rect.y2)
rect_str = f"{x1},{y1},{x2},{y2}"
# print(rect_str)
rect_strs.append(rect_str)
# print(f'Rect #{rect_id}: {x1},{y1} -> {x2},{y2}')
# print(rect_strs)
# sort the rectangles
rect_strs = sorted(rect_strs)
# single solution as a string
solution_str = '-'.join(rect_strs)
# print(solution_str)
# store the solutions
self.__solutions.append(solution_str)
self.__unique_solutions.add(solution_str) # __unique_solutions is a set, so duplicates will get removed
def solution_count(self):
return self.__solution_count
# returns all solutions
def get_solutions(self):
return self.__solutions
"""
returns unique solutions
returns the permutation free list of solution strings
"""
def get_unique_solutions(self):
return list(self.__unique_solutions) # __unique_solutions is a Set, convert to list
'''
non-API method. Used for testing and running locally / in a Notebook.
Draws the rectangles
'''
def drawRectsFromCoords(rect_coords, parent_rects):
import matplotlib.pyplot as plt
import matplotlib.patches as patches
# TODO: to add support for multiple parent rects, update here
xSize = parent_rects[0][0]
ySize = parent_rects[0][1]
# draw rectangle
fig,ax = plt.subplots(1)
plt.xlim(0,xSize)
plt.ylim(0,ySize)
plt.gca().set_aspect('equal', adjustable='box')
# print coords
coords = []
colors = ['r', 'g', 'b', 'y', 'brown', 'black', 'violet', 'pink', 'gray', 'orange', 'b', 'y']
for idx, coords in enumerate(rect_coords):
x1=coords[0]
y1=coords[1]
x2=coords[2]
y2=coords[3]
# print(f"{x1}, {y1} -> {x2}, {y2}")
width = abs(x1-x2)
height = abs(y1-y2)
# print(f"Rect#{idx}: {width}x{height}")
# Create a Rectangle patch
rect_shape = patches.Rectangle((x1,y1), width, height,facecolor=colors[idx])
# Add the patch to the Axes
ax.add_patch(rect_shape)
plt.show()
# for testing
if __name__ == '__main__':
child_rects = [
# [1, 1],
# [2, 2],
# [1, 3],
# [4, 3],
# [2, 4],
# [2, 2],
[27, 17],
[27, 17],
[18, 56],
# [3, 3],
# [3, 3],
# [3, 3],
# [3, 3],
]
# parent_rects = [[6,6]]
parent_rects = [[84,72]]
solutions = StockCutter(child_rects, parent_rects, output_json=False) # get the integer solution
for sol in solutions:
print(sol)
drawRectsFromCoords(sol, parent_rects)