forked from superquadratic/beat-bricks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lego.py
111 lines (89 loc) · 2.94 KB
/
lego.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import json
import cv2
import numpy
from pattern import SharedPattern
WINDOW = 'beat it'
CELL_SIZE = 16
GRID_SIZE = 16 * CELL_SIZE
def cell_start_end(id):
start = id * CELL_SIZE + CELL_SIZE / 4
end = start + CELL_SIZE / 2
return start, end
def average_cell_color_hsv(img, y, x):
y_start, y_end = cell_start_end(y)
x_start, x_end = cell_start_end(x)
cell = img[
y_start:y_end,
x_start:x_end,
:]
return bgr2hsv(numpy.average(numpy.average(cell, axis=0), axis=0))
def is_note_color_hsv(color):
h, s, v = color
return (
(-0.3 < h < 0.1 and s > 0.6 and v > 200) or # red brick
(0.8 < h < 1.2 and s > 0.3 and v > 220) or # yellow brick
(3.2 < h < 3.6 and s > 0.9 and v > 180) or # blue brick
(s < 0.1 and v > 250)) # white brick
def is_clear_color_hsv(color):
h, s, v = color
return 2.5 < h < 2.9 and s > 0.7 and v > 100
def bgr2hsv(color):
b, g, r = color
v = max(b, g, r)
m = min(b, g, r)
if v > 0:
s = (v - m) / v
else:
s = 0
if v == r:
h = (g - b) / (v - m)
elif v == g:
h = 2 + (b - r) / (v - m)
else:
h = 4 + (r - g) / (v - m)
return (h, s, v)
class LegoPatternDetector(object):
def __init__(self):
self.homography = self.compute_homography()
self.pattern = SharedPattern()
def compute_homography(self):
src_points = json.load(open('rect.json'))
dst_points = [
[0, 0],
[GRID_SIZE, 0],
[GRID_SIZE, GRID_SIZE],
[0, GRID_SIZE]]
return cv2.findHomography(
numpy.asarray(src_points, float),
numpy.asarray(dst_points, float))[0]
def process_image(self, img):
img = cv2.warpPerspective(img, self.homography, (GRID_SIZE, GRID_SIZE))
self.update_notes(img)
self.mute_tracks(img)
return img
def update_notes(self, img):
for track in range(self.pattern.num_tracks):
for step in range(self.pattern.num_steps):
color = average_cell_color_hsv(img, track, step)
if is_clear_color_hsv(color):
self.pattern.clear_step(track, step)
elif is_note_color_hsv(color):
self.pattern.set_step(track, step)
def mute_tracks(self, img):
for track in range(self.pattern.num_tracks):
color = average_cell_color_hsv(img, track + 8, 0)
if is_clear_color_hsv(color):
self.pattern.unmute(track)
else:
self.pattern.mute(track)
if __name__ == '__main__':
capture = cv2.VideoCapture(0)
cv2.namedWindow(WINDOW)
pattern_detector = LegoPatternDetector()
while True:
success, frame = capture.read()
if success:
img = pattern_detector.process_image(frame)
cv2.imshow(WINDOW, img)
if cv2.waitKey(1) == 27:
break