-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdates.html
299 lines (219 loc) · 9.47 KB
/
dates.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>epiDAMIK</title>
<link rel="stylesheet" type="text/css" href="http://yui.yahooapis.com/3.3.0/build/cssreset/reset-min.css">
<link href="global1.css" rel="stylesheet" type="text/css" />
<script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-3960302-2']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
<style type="text/css">
table{
width:100%;
}
td
{
vertical-align:top;
}
</style>
<style>
.sticky {
position: fixed;
overflow: hidden;
background-color: #004D98;
list-style:none;
margin:0;
padding:0;
top: 0;
text-align:center;
width:900px;
}
.sticky a{
display:inline-block;
color: #f2f2f2;
text-align: center;
padding: 12px 12px;
text-decoration: none;
font-size: 20px;
}
.sticky li{
display:inline-block;
}
/* Main content */
.main {
margin-top: 40px; /* Add a top margin to avoid content overlay */
}
</style>
<style type="text/css">
/* Three columns side by side */
.column {
float: left;
width: 42%;
margin-bottom: 16px;
padding: 0 8px;
margin-right: 50px;
}
/* Display the columns below each other instead of side by side on small screens */
.cardimage{
width:80px;
height:100px;
float: left;
margin-right: 20px
}
/* Add some shadows to create a card effect */
.card {
/*box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2);*/
}
/* Some left and right padding inside the container */
.container {
padding: 0 16px;
}
/* Clear floats */
.container::after, .row::after {
content: "";
clear: both;
display: table;
}
.title {
color: grey;
}
.button {
border: none;
outline: 0;
display: inline-block;
padding: 8px;
color: white;
background-color:white;
text-align:left;
cursor: pointer;
margin-top:0px;
margin-bottom: 5px;
}
</style>
<!--
<div style="background-color:#5e7593; position:relative;">
-->
<!--#8e2344 -->
<!--
<div style="background-color:#60311B; position:relative;">
<div style="margin: 0px auto; width:900px;height: 190px; position:relative; ">
<div style="position:absolute; left: 2px; top: 20px;">
<span class="fullname">CS 6604: Fall 2015<br> Data Mining Large Networks <br>and Time-Series</span>
<img style="position:absolute; left: 675px; width: 215px; height: 50px; top: 20px;" src="vtlogo-2.png" width="750" height="275" />
</div>
</div>
</div>
-->
</head>
<body style="width:900px; padding:auto; margin:20px auto auto auto;">
<ul id="nav">
<!--<li><a href="index.html"><img style ="vertical-align:text-bottom;", src="smalllogoWhite.png" width="150"/></a></li> -->
<li><a href="index.html">Home</a></li>
<li><a href="program.html">Program</a></li>
<li><a href="dates.html">CFP & Dates</a></li>
<li><a href="committee.html">Committee</a></li>
<li><a href="organizers.html">Organizers</a></li>
<li><a href="https://twitter.com/EpidamikW"><img style ="vertical-align:text-bottom;", src="twitter-white.png" width="30"/></a></li>
</ul>
<div style=" width:900px; height:60px; display:table; text-align:center;padding-top:30px;">
<!--<span class="fullname" style="font-family:arial;text-align:center; vertical-align:middle; display:table-cell;">CS 5525: Spring 2018</span>-->
<!-- <img style="position:absolute; float:left: 435px; width: 200px; height: 32px; top: 15px;" src="vtGrey.jpg" width="750" height="150" /> -->
<span class="fullname" style="font-family:arial;text-align:justify; vertical-align:top; display:table-cell;">
<h1>Call for Papers</h1>
</span>
<div style="">
<img style="float:right;" src="textlogo2024.png" width="200"/></span>
</div>
</div>
<div style="text-align:justify">
<p>
The epiDAMIK @ SIGKDD 2024 workshop is a forum to discuss new insights into how data mining can play a bigger role in epidemiology and public health research. While the integration of data science methods into epidemiology has significant potential, it remains under studied. We aim to raise the profile of this emerging research area of data-driven and computational epidemiology, and create a venue for presenting state-of-the-art and in-progress results—in particular, results that would otherwise be difficult to present at a major data mining conference, including lessons learnt in the ‘trenches’. The current COVID-19 pandemic has only showcased the urgency and importance of this area.
</p>
<p>
Our target audience consists of data mining and machine learning researchers from both academia and industry who are interested in epidemiological and public-health applications of their work. Additionally, we are aiming to attract researchers and practitioners from the areas of mathematical epidemiology and public health, who are increasingly dealing with more complex models and novel data sources––these problems bring up novel challenges from a data science and machine learning perspective.
</p>
<p>
The past iterations of the workshop were co-located with SIGKDD since 2018. These were a great success with insightful contributed works as well as high-quality keynotes.
</p>
<p>
To reflect the broad scope of work, we encourage submissions that span the spectrum from theoretical analysis, algorithms and implementation, to applications and empirical studies, from both data mining and public health viewpoints.
</p>
<p>
Topics of interest include, but are not limited to:
</p>
<ul>
<li>Reinforcement learning for epidemic control</li>
<li>Graph mining and network science approaches to epidemiology</li>
<li>Hybrid models of machine learning and epidemiological models</li>
<li>LLMs for information retrieval in public health</li>
<li>Foundation models for public health</li>
<li>Algorithms and frameworks for accelerating public health simulations</li>
<li>Interpretable and expert-driven AI for public health</li>
<li>Syndromic surveillance using social media, search, and other data sources</li>
<li>Fairness in resource allocation and surveillance</li>
<li>Challenges in model validation against ground truth</li>
<li>Outbreak detection and inference</li>
<li>Epidemiologically-relevant data collection, nowcasting, and forecasting</li>
<li>Visualization of epidemiological data</li>
<li>Planning for public health policy</li>
<li>Crowdsourced methods for detection and forecasting</li>
<li>Use of novel datasets for prediction and analysis (including EHR records)</li>
<li>Data mining data for hospital-acquired infections like C.diff, MRSA etc.</li>
<li>Identifying health behaviors</li>
<li>Handling missing and noisy data</li>
<li>Disease forecasting challenge (like the CDC FluSight) experiences</li>
<li>Infodemic, misinformation, and disinformation</li>
</ul>
<br/>
<p>
We invite the submission of full regular research papers (6-8 pages) as well as short, work-in-progress, demo or position papers (2-4 pages). Short summary versions of recently published major papers (2-4 pages) are also welcome.
</p>
<p>
We recommend papers to be formatted according to the standard double-column <a href="https://www.acm.org/publications/proceedings-template">ACM Proceedings Style</a>.
All papers will be peer reviewed and single-blinded, thus, they should contain the name of authors and their affiliations.
Authors whose papers are accepted to the workshop will have the opportunity to participate in a poster session, and some may also be chosen for oral presentation.
There are no restrictions on already submitted work or authors simultaneously posting their manuscripts to any pre-print server.
The accepted papers will be made available online but will not be considered archival. Therefore, authors are free to resubmit the paper to pre-print servers and future conferences and journals.
</p>
For paper submission, please proceed to the <a href="https://openreview.net/group?id=KDD.org/2024/Workshop/epiDAMIK">submission website</a>.
<br>
Please send any enquiries to [email protected].<br>
</div>
<h2>Important Dates</h2>
<div style="text-align:justify">
All deadlines are set at Anywhere in Earth (AoE) time.
<ul>
<li>Submission site open: April 10, 2024</li>
<!-- <li>Workshop paper submissions: May 28, 2024</li> -->
<li>Workshop paper submissions: <strike>May 28, 2024</strike> June 9, 2024</li>
<li>Workshop paper notifications: July 2, 2024</li>
<li>Camera-ready papers due: July 28, 2024</li>
<li>Workshop date: August 26, 2024</li>
</ul>
</div>
<div id="credit">
<script language="javascript">
window.onscroll = function() {myFunction()};
var navbar = document.getElementById("nav");
// var sticky = navbar.offsetTop;
// function myFunction() {
// if (window.pageYOffset >= sticky) {
// navbar.classList.add("sticky")
// } else {
// navbar.classList.remove("sticky");
// }
// }
</script>
</div>
</div>
</div>
</body>
</html>