-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimg_load.py
177 lines (139 loc) · 5.5 KB
/
img_load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import numpy as np
import matplotlib.pyplot as plt
def readpara(filepath,alltabs=False):
import csv
with open(filepath+'parameters.txt') as csvfile:
reader=csv.DictReader(csvfile,delimiter='\t')
fieldnames=reader.fieldnames
if alltabs:
result=[]
for row in reader:
para=[]
for fn in fieldnames:
para.append(float(row[fn]))
for value in row[None]:
para.append(float(value))
result.append(para)
return result
else:
result=[]
filenum=[]
for row in reader:
result.append(float(row[fieldnames[1]]))
filenum.append(int(row[fieldnames[0]]))
return result, filenum
def readdata(filepath,alltabs=False):
import csv
with open(filepath) as csvfile:
reader=csv.DictReader(csvfile,delimiter='\t')
fieldnames=reader.fieldnames
result=[]
for row in reader:
para=[]
for fn in fieldnames:
para.append(float(row[fn]))
for value in row[None]:
para.append(float(value))
result.append(para)
return result, fieldnames
def readindex(filepath):
import csv
with open(filepath+'index.txt') as csvfile:
reader=csv.reader(csvfile,delimiter='\t')
result=[]
fldnum=[]
for row in reader:
result.append(row[1])
fldnum.append(row[0])
return result,fldnum
def read_binary(fname,raw=False, signedRaw=False):
import os
with open(fname, "rb") as f:
dim=[int.from_bytes(f.read(4), byteorder='big'),int.from_bytes(f.read(4), byteorder='big')]
data_size=int((os.stat(fname).st_size-8)/dim[0]/dim[1])
if raw:
ODimg = np.zeros(dim,dtype=int)
for i in range(dim[0]):
for j in range(dim[1]):
ODimg[i][j] = int.from_bytes(f.read(data_size), byteorder='big', signed=signedRaw)
else:
ODimg = np.zeros(dim,dtype=float)
for i in range(dim[0]):
for j in range(dim[1]):
ODimg[i][j] = int.from_bytes(f.read(data_size), byteorder='big', signed=True)/10000.
return ODimg, dim
def load_bimg(filepath=None,para=None,raw=False, imgnum=[]):
from pathlib import Path
import ntpath
#create filelist
filelist=[]
if filepath==None:
#pending, should find a way to manually choose the file
#filelist = DIALOG_PICKFILE(/MULTIPLE_FILES,/READ,PATH= SCOPE_VARFETCH('workingdirectory', LEVEL=1, /ENTER),get_path=filepath)
#(SCOPE_VARFETCH('workingdirectory', /ENTER, LEVEL=1)) = filepath
parameters, filenum=readpara(filepath)
if para!=None:
ind=np.where( np.array(parameters) == para)[0]
numfiles=len(ind)
for i in ind:
filelist.append(filepath+string(filenum[i]))
else:
numfiles=len(filelist)
else:
parameters, filenum=readpara(filepath)
if para!=None:
ind=np.where( np.array(parameters) == para)[0]
numfiles=len(ind)
for i in ind:
filelist.append(filepath+str(filenum[i]))
else:
numfiles=len(parameters)
for i in range(numfiles):
filelist.append(filepath+str(filenum[i]))
dataDim=[1]
if np.asarray(imgnum).size!=0:
filelist = [filelist[inum] for inum in imgnum]
#load binary images
for fname in filelist:
if dataDim[0]==1:
od=[]
raw1=[]
raw2=[]
ramp_para=[]
if raw==False:
ODimg, dataDim = read_binary(fname);
od.append(ODimg)
#load raw images
else:
imgpath=filepath+"rawimg_"+ntpath.basename(fname)
if Path(imgpath).exists():
ODimg, dataDim = read_binary(imgpath,raw=True)
raw1.append(ODimg[0:dataDim[0]//2-1,:])
raw2.append(ODimg[dataDim[0]//2:dataDim[0]-1,:])
else:
print("File path does not exist.")
# ramp_para.append(parameters[np.where( np.array(filenum) == int(ntpath.basename(fname)))[0][0]])
ramp_para.append(0)
if np.size(filelist)>0:
od=np.asarray(od,dtype=np.float32)
raw1=np.asarray(raw1,dtype=np.float32)
raw2=np.asarray(raw2,dtype=np.float32)
print('load data from ' + filepath)
print('od size', od.shape)
return {'od':od,'raw1':raw1,'raw2':raw2,'para':ramp_para}
else:
return {'od':[],'raw1':[],'raw2':[],'para':[]}
def imgplay(img,figtitle='Frame Number: ',delay=300):
import matplotlib.animation as animation
framenum=np.shape(img)[0]
fig=plt.figure()
fig.suptitle(figtitle + str(0), fontsize=12)
im=plt.imshow(img[0,:,:],animated=True,interpolation='nearest')#,extent=[0*0.85,15*0.85,25*0.85,0*0.85])
plt.colorbar()
#plt.show()
ani = animation.FuncAnimation(fig, updatefig ,frames=range(framenum), interval=delay, blit=True,repeat=False)
def updatefig(frame):
im.set_data(img[frame,:,:])
fig.suptitle(figtitle + str(frame), fontsize=12)
#im1.set_data(result['od'][frame,10:55,74:81])
return im,