-
Notifications
You must be signed in to change notification settings - Fork 3
/
environment.py
595 lines (478 loc) · 19.9 KB
/
environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
import gym
from gym import Wrapper
from matplotlib import pyplot as plt
import numpy as np
import math
import gym
from gym import utils, spaces, logger
from gym.utils import seeding
from gym.envs.mujoco import mujoco_env
from gym.wrappers.time_limit import TimeLimit
# Create a dictionary of environments and return
def create_env(env_params, seed_dict):
env_dict = {}
print('_______________')
for d_, n_ in env_params.items():
# Unmodified gym environments
if n_ == 'cartpole':
curenv = CustomCartPoleEnv()
curenv = TimeLimit(curenv, max_episode_steps=200)
env_type = 'nogoal'
elif n_ == 'mountaincar':
curenv = gym.make('MountainCarContinuous-v0')
curenv = CustomMountainCarEnv(curenv)
env_type = 'nogoal'
elif n_ == 'pendulum':
curenv = gym.make('Pendulum-v0')
curenv = CustomPendulumEnv(curenv, d_)
env_type = 'nogoal'
elif n_ == 'trunc_pendulum':
curenv = gym.make('Pendulum-v0')
curenv = TruncatedPendulumEnv(curenv)
env_type = 'nogoal'
elif n_ == 'permutedpendulum':
curenv = gym.make('Pendulum-v0')
curenv = PermutedPendulumEnv(curenv, d_)
env_type = 'nogoal'
elif n_ == 'modifiedpendulum':
curenv = gym.make('Pendulum-v0')
curenv = ModifiedPendulumEnv(curenv)
env_type = 'nogoal'
elif n_ == 'invpendulum':
curenv = gym.make('InvertedPendulum-v2')
curenv = InvertedPendulumEnv(curenv)
env_type = 'nogoal'
elif n_ == 'swimmer':
curenv = gym.make('Swimmer-v1')
env_type = 'nogoal'
elif n_ == 'snake3':
curenv = gym.make('SnakeThree-v1')
env_type = 'nogoal'
elif n_ == 'snake4':
curenv = gym.make('SnakeFour-v1')
env_type = 'nogoal'
elif n_ == 'snake5':
curenv = gym.make('SnakeFive-v1')
env_type = 'nogoal'
elif n_ == 'snake7':
curenv = gym.make('SnakeSeven-v1')
env_type = 'nogoal'
elif n_ == 'reacher2':
curenv = gym.make('Reacher2DOF-v0')
env_type = 'goal'
elif n_ == 'reacher2_corner':
curenv = gym.make('Reacher2DOFCorner-v0')
env_type = 'goal'
elif n_ == 'reacher2_wall':
curenv = gym.make('Reacher2DOFWall-v0')
env_type = 'goal'
# Dynamics
elif n_ == 'reacher2_act':
curenv = gym.make('Reacher2DOFAct-v0')
env_type = 'goal'
elif n_ == 'reacher2_act_wall':
curenv = gym.make('Reacher2DOFActWall-v0')
env_type = 'goal'
elif n_ == 'reacher2_act_corner':
curenv = gym.make('Reacher2DOFActCorner-v0')
env_type = 'goal'
# Embodiment
elif n_ == 'reacher3':
curenv = gym.make('Reacher3DOF-v0')
env_type = 'goal'
elif n_ == 'reacher3_wall':
curenv = gym.make('Reacher3DOFWall-v0')
env_type = 'goal'
elif n_ == 'reacher3_corner':
curenv = gym.make('Reacher3DOFCorner-v0')
env_type = 'goal'
# Push
elif n_ == 'reacher2_push':
curenv = gym.make('Reacher2DOFPush-v0')
env_type = 'goal'
elif n_ == 'reacher2_act_push':
curenv = gym.make('Reacher2DOFActPush-v0')
env_type = 'goal'
elif n_ == 'reacher3_push':
curenv = gym.make('Reacher3DOFPush-v0')
env_type = 'goal'
# Viewpoint
elif n_ == 'tp_reacher2':
curenv = gym.make('TP_Reacher2DOF-v0')
env_type = 'goal'
elif n_ == 'tp_write_reacher2':
curenv = gym.make('TP_WRITE_Reacher2DOF-v0')
env_type = 'goal'
elif n_ == 'write_reacher2':
curenv = gym.make('WRITE_Reacher2DOF-v0')
env_type = 'goal'
# Longer reachers
elif n_ == 'reacher4':
curenv = gym.make('Reacher4DOF-v0')
env_type = 'goal'
elif n_ == 'reacher5':
curenv = gym.make('Reacher5DOF-v0')
env_type = 'goal'
elif n_ == 'reacher6':
curenv = gym.make('Reacher6DOF-v0')
env_type = 'goal'
else:
print("Unrecognized environment name: {}".format(n_))
exit(1)
# Seed the chosen env
curenv.seed(seed_dict[d_])
# State action space of the chosen env
state_dim = np.prod(np.array(curenv.observation_space.shape))
action_dim = np.prod(np.array(curenv.action_space.shape))
env_dict.update({d_: {'env': curenv,
'state_dim': state_dim,
'action_dim': action_dim,
'type': env_type,
'name': n_}})
# Print out environment details
print('{} env name: {}, state_dim: {}, action_dim: {}, type: {}'.format(d_, n_, state_dim, action_dim, env_type))
print('_______________')
return env_dict
## Define custom environments below
class CustomMountainCarEnv(Wrapper):
def __init__(self, env):
#print(super(PendulumEnv, self).__init__)
super(CustomMountainCarEnv, self).__init__(env)
self.env.env.power = 0.0015
self.env.env.min_position = -1.6
self.other_goal_position = -1.45
print("got to init")
def step(self, action):
for i in range(1):
obs, reward, done, info = self.env.step(action)
# Allow climbing up the hill in both directions
position = self.env.env.state[0]
if position < self.other_goal_position:
done = True
reward = 100.
return obs, reward, done, info
if done:
return obs, reward, done, info
return obs, reward, done, info
def reset(self):
self.env.reset()
self.env.env.state = np.array([self.env.env.np_random.uniform(low=-0.7, high=-0.3), 0.])
return self.env.env.state
class CustomPendulumEnv(Wrapper):
def __init__(self, env, domain):
super(CustomPendulumEnv, self).__init__(env)
def set_state_from_obs(self, obs):
'''
Set the environment state manually from observations
obs has size [state_dim, ]
Args:
Returns:
'''
state = np.array([np.arctan2(obs[1], obs[0]), obs[2]])
self.env.env.state = state
## Define custom environments below
class TruncatedPendulumEnv(Wrapper):
def __init__(self, env):
#print(super(PendulumEnv, self).__init__)
super(TruncatedPendulumEnv, self).__init__(env)
def step(self, action):
next_obs, reward, done, info = self.env.step(action)
angle = np.arctan2(next_obs[1], next_obs[0])
if np.absolute(angle) < 0.2:
done = True
reward = 100.
return next_obs, reward, done, info
def reset(self):
self.env.reset()
low = np.array([np.pi-0.2, -1.])
high = np.array([np.pi+0.2, 1.])
self.env.env.state = self.env.env.np_random.uniform(low=low, high=high)
return self.env.env._get_obs()
## Define custom environments below
class PermutedPendulumEnv(Wrapper):
def __init__(self, env, domain):
#print(super(PendulumEnv, self).__init__)
super(PendulumEnv, self).__init__(env)
if domain == 'expert':
self.p = np.array([[0, 0, 1],
[1, 0, 0],
[0, 1, 0]])
else:
self.p = np.eye(3)
self.pinv = np.linalg.inv(self.p)
def reset(self):
obs = self.env.reset()
return np.matmul(self.p, obs)
def step(self, action):
next_obs, reward, done, info = self.env.step(action)
return np.matmul(self.p, next_obs), reward, done, info
'''
def render(self):
img = super(PendulumEnv, self).render(mode='rgb_array')
plt.title(self.domain)
plt.imshow(img)
'''
class ModifiedPendulumEnv(Wrapper):
'''
Pendulum environment with a longer rod.
'''
def __init__(self, env):
#print(super(PendulumEnv, self).__init__)
super(ModifiedPendulumEnv, self).__init__(env)
def step(self, action):
assert self.env._episode_started_at is not None, "Cannot call env.step() before calling reset()"
observation, reward, done, info = self.inner_step(action)
self.env._elapsed_steps += 1
if self.env._past_limit():
if self.env.metadata.get('semantics.autoreset'):
_ = self.env.reset() # automatically reset the env
done = True
return observation, reward, done, info
def inner_step(self, u):
th, thdot = self.env.env.state # th := theta
g = 10.
m = 1.
l = 0.5
dt = self.env.env.dt
u = np.clip(u, -self.env.env.max_torque, self.env.env.max_torque)[0]
self.env.env.last_u = u # for rendering
costs = self.angle_normalize(th)**2 + .1*thdot**2 + .001*(u**2)
newthdot = thdot + (-3*g/(2*l) * np.sin(th + np.pi) + 3./(m*l**2)*u) * dt
newth = th + newthdot*dt
newthdot = np.clip(newthdot, -self.env.env.max_speed, self.env.env.max_speed) #pylint: disable=E1111
self.env.env.state = np.array([newth, newthdot])
return self.env.env._get_obs(), -costs, False, {}
def angle_normalize(self, x):
return (((x+np.pi) % (2*np.pi)) - np.pi)
class CustomCartPoleEnv(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second' : 50
}
def __init__(self):
self.gravity = 9.8
# self.masscart = 1.0
# self.masspole = 0.1
self.masscart = 0.5 # 0.5
self.masspole = 0.5 # 0.1
self.total_mass = (self.masspole + self.masscart)
self.length = 0.6 # 0.4 actually half the pole's length
self.polemass_length = (self.masspole * self.length)
self.force_mag = 10.0
self.max_force = 2*self.force_mag ## TODO: May have to change maximum allowed force
self.tau = 0.02 # seconds between state updates
self.kinematics_integrator = 'euler'
# Angle at which to fail the episode
self.theta_threshold_radians = 12 * 2 * math.pi / 360
self.x_threshold = 2.4
# Angle limit set to 2 * theta_threshold_radians so failing observation is still within bounds
high = np.array([
self.x_threshold * 2,
np.finfo(np.float32).max,
1.,
1.,
np.finfo(np.float32).max])
'''
high = np.array([
self.x_threshold * 2,
100.,
1.,
1.,
100.])
'''
# high = np.array([
# self.x_threshold * 2,
# np.finfo(np.float32).max,
# self.theta_threshold_radians * 2,
# np.finfo(np.float32).max])
#self.action_space = spaces.Discrete(2)
self.action_space = spaces.Box(-self.max_force, self.max_force, shape=(1,), dtype=np.float32)
self.observation_space = spaces.Box(-high, high, dtype=np.float32)
self.seed()
self.viewer = None
self.state = None
self.steps_beyond_done = None
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def angle_normalize(self, x):
return (((x+np.pi) % (2*np.pi)) - np.pi)
def _get_obs(self):
x, x_dot, theta, theta_dot = self.state
return np.array([x, x_dot, np.cos(theta), np.sin(theta), theta_dot])
def _obs_to_state(self, obs):
x, x_dot, cos_theta, sin_theta, theta_dot = obs
return np.array([x, x_dot, np.arctan2(sin_theta, cos_theta), theta_dot])
def step(self, action):
#assert self.action_space.contains(action), "%r (%s) invalid"%(action, type(action))
state = self.state
x, x_dot, theta, theta_dot = state
# Use continuous actions
force = np.clip(action, -self.max_force, self.max_force)[0]
#force = self.force_mag if action==1 else -self.force_mag
costheta = math.cos(theta)
sintheta = math.sin(theta)
temp = (force + self.polemass_length * theta_dot * theta_dot * sintheta) / self.total_mass
thetaacc = (self.gravity * sintheta - costheta* temp) / (self.length * (4.0/3.0 - self.masspole * costheta * costheta / self.total_mass))
xacc = temp - self.polemass_length * thetaacc * costheta / self.total_mass
# Calculate the new state
if self.kinematics_integrator == 'euler':
x = x + self.tau * x_dot
x_dot = x_dot + self.tau * xacc
theta = theta + self.tau * theta_dot
theta_dot = theta_dot + self.tau * thetaacc
# Update self.state
self.state = (x,x_dot,theta,theta_dot)
# done = x < -self.x_threshold \
# or x > self.x_threshold \
# or theta < -self.theta_threshold_radians \
# or theta > self.theta_threshold_radians
# Reward (similar to the pendulum environment)
#cost = self.angle_normalize(theta)**2 + .1*theta_dot**2 + .001*(force**2)
#cost = self.angle_normalize(theta)**2 + .1*theta_dot**2 + .001*(force**2)
#reward = (-cost + 20.) * 0.05
reward_theta = (np.cos(theta)+1.0)/2.0
reward_x = np.cos((x/self.x_threshold)*(np.pi/2.0))
reward = reward_theta*reward_x
# Only finish if cart slides out of view
done = bool(x < -self.x_threshold or x > self.x_threshold)
#done = False
if done:
if self.steps_beyond_done is None:
# Pole just fell!
self.steps_beyond_done = 0
#reward = 1.0
elif self.steps_beyond_done == 0:
logger.warn("You are calling 'step()' even though this environment has already returned done = True. You should always call 'reset()' once you receive 'done = True' -- any further steps are undefined behavior.")
self.steps_beyond_done += 1
reward = -100.
#return np.array(self.state), reward, done, {}
return self._get_obs(), reward, done, {}
def reset(self):
# self.state = self.np_random.uniform(low=-0.05, high=0.05, size=(4,))
# self.steps_beyond_done = None
# return np.array(self.state)
# start from center, any pendulum angle, and low angular/x velocity
#high = np.array([0.05, 0., 0, 1.])
#high = np.array([0.05, 0.05, 0.05, 0.05])
#self.state = self.np_random.uniform(-high, high)
self.state = np.random.normal(loc=np.array([0.0, 0.0, np.pi, 0.0]), scale=np.array([0.2, 0.2, 0.2, 0.2]))
self.steps_beyond_done = None
return self._get_obs()
def render(self, mode='human'):
screen_width = 450
screen_height = 300
world_width = self.x_threshold*2
scale = screen_width/world_width
carty = 100 # TOP OF CART
polewidth = 10.0
polelen = scale * (2 * self.length)
cartwidth = 50.0
cartheight = 30.0
if self.viewer is None:
from gym.envs.classic_control import rendering
self.viewer = rendering.Viewer(screen_width, screen_height)
l,r,t,b = -cartwidth/2, cartwidth/2, cartheight/2, -cartheight/2
axleoffset =cartheight/4.0
cart = rendering.FilledPolygon([(l,b), (l,t), (r,t), (r,b)])
self.carttrans = rendering.Transform()
cart.add_attr(self.carttrans)
self.viewer.add_geom(cart)
l,r,t,b = -polewidth/2,polewidth/2,polelen-polewidth/2,-polewidth/2
pole = rendering.FilledPolygon([(l,b), (l,t), (r,t), (r,b)])
pole.set_color(.8,.6,.4)
self.poletrans = rendering.Transform(translation=(0, axleoffset))
pole.add_attr(self.poletrans)
pole.add_attr(self.carttrans)
self.viewer.add_geom(pole)
self.axle = rendering.make_circle(polewidth/2)
self.axle.add_attr(self.poletrans)
self.axle.add_attr(self.carttrans)
self.axle.set_color(.5,.5,.8)
self.viewer.add_geom(self.axle)
self.track = rendering.Line((0,carty), (screen_width,carty))
self.track.set_color(0,0,0)
self.viewer.add_geom(self.track)
self._pole_geom = pole
if self.state is None: return None
# Edit the pole polygon vertex
pole = self._pole_geom
l,r,t,b = -polewidth/2,polewidth/2,polelen-polewidth/2,-polewidth/2
pole.v = [(l,b), (l,t), (r,t), (r,b)]
x = self.state
cartx = x[0]*scale+screen_width/2.0 # MIDDLE OF CART
self.carttrans.set_translation(cartx, carty)
self.poletrans.set_rotation(-x[2]) ### TODO: might have to change this
return self.viewer.render(return_rgb_array = mode=='rgb_array')
def close(self):
if self.viewer:
self.viewer.close()
self.viewer = None
class InvertedPendulumEnv(Wrapper):
'''
Inverted pendulum on a sliding cart
'''
def __init__(self, env):
super(InvertedPendulumEnv, self).__init__(env)
def step(self, action):
assert self.env._episode_started_at is not None, "Cannot call env.step() before calling reset()"
observation, reward, done, info = self.inner_step(action)
self.env._elapsed_steps += 1
if self.env._past_limit():
if self.env.metadata.get('semantics.autoreset'):
_ = self.env.reset() # automatically reset the env
done = True
return observation, reward, done, info
def inner_step(self, a):
## Modify the reward function similar to pendulum
reward = 1.0
self.env.env.do_simulation(a, self.env.env.frame_skip)
ob = self.env.env._get_obs()
#notdone = np.isfinite(ob).all() and (np.abs(ob[1]) <= .2)
#done = not notdone
return ob, reward, False, {}
def inner_step(self, u):
th, thdot = self.env.env.state # th := theta
g = 10.
m = 1.
l = 0.5
dt = self.env.env.dt
u = np.clip(u, -self.env.env.max_torque, self.env.env.max_torque)[0]
self.env.env.last_u = u # for rendering
costs = self.angle_normalize(th)**2 + .1*thdot**2 + .001*(u**2)
newthdot = thdot + (-3*g/(2*l) * np.sin(th + np.pi) + 3./(m*l**2)*u) * dt
newth = th + newthdot*dt
newthdot = np.clip(newthdot, -self.env.env.max_speed, self.env.env.max_speed) #pylint: disable=E1111
self.env.env.state = np.array([newth, newthdot])
return self.env.env._get_obs(), -costs, False, {}
class InvertedPendulumEnv(mujoco_env.MujocoEnv, utils.EzPickle):
def __init__(self):
utils.EzPickle.__init__(self)
mujoco_env.MujocoEnv.__init__(self, 'inverted_pendulum.xml', 2)
self.t = 0
def step(self, a):
reward = 1.0
self.do_simulation(a, self.frame_skip)
ob = self._get_obs()
#notdone = np.isfinite(ob).all() and (np.abs(ob[1]) <= .2)
self.t += 1
notdone = np.isfinite(ob).all() and (self.t < 199)
print(self.t)
done = not notdone
return ob, reward, done, {}
def reset_model(self):
qpos = self.init_qpos + self.np_random.uniform(size=self.model.nq, low=-0.01, high=0.01)
qvel = self.init_qvel + self.np_random.uniform(size=self.model.nv, low=-0.01, high=0.01)
self.set_state(qpos, qvel)
self.t = 0
return self._get_obs()
def _get_obs(self):
return np.concatenate([self.sim.data.qpos, self.sim.data.qvel]).ravel()
def viewer_setup(self):
v = self.viewer
v.cam.trackbodyid = 0
v.cam.distance = self.model.stat.extent
class MountainCarEnv(Wrapper):
def __init__(self, env):
#print(super(PendulumEnv, self).__init__)
super(MountainCarEnv, self).__init__(env)