-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.py
175 lines (138 loc) · 5.91 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import numpy as np
import gym
from gym import wrappers
import tensorflow as tf
import json, sys, os
from os import path
import time
import shutil
import matplotlib
matplotlib.use("agg")
from matplotlib import pyplot as plt
import importlib
import argparse
import time
import sys
import random
# os settings
sys.path.append(os.getcwd() + '/..')
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
# Experiment modules
from dail.environment import create_env
from dail.replaymemory import create_replay_memory
from dail.agents import ddpg
from dail.utils import *
#from dail.environments import register
from dail import reacher_env
# Parse cmdline args
parser = argparse.ArgumentParser(description='Domain Adaptive Imitation Learning (DAIL)')
parser.add_argument('--logdir', default='./logs/temp', type=str)
parser.add_argument('--save_expert_dir', default='./saved_expert/temp', type=str)
parser.add_argument('--save_learner_dir', default='./saved_learner/temp', type=str)
parser.add_argument('--save_dataset_dir', default='./temp/temp.pickle', type=str)
parser.add_argument('--load_expert_dir', default='./saved_expert/temp', type=str)
parser.add_argument('--load_learner_dir', default='./saved_learner/temp', type=str)
parser.add_argument('--load_dataset_dir', default='./temp/empty.pickle', type=str)
parser.add_argument('--expert_dataset_dir', default='./saved_dataset/temp', type=str)
parser.add_argument('--learner_dataset_dir', default='./saved_dataset/temp', type=str)
parser.add_argument('--edomain', required=True, type=str)
parser.add_argument('--ldomain', required=True, type=str)
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--exp_id', default='reacher', type=str)
parser.add_argument('--doc', default='', type=str)
parser.add_argument('--gpu', default=-1, type=int)
parser.add_argument('--render', default=1, type=int)
parser.add_argument('--agent_type', type=str, required=True)
parser.add_argument('--algo', type=str, required=True)
parser.add_argument('--n_demo', type=int, default=0)
args = parser.parse_args()
# Clear out the save logs directory (for tensorboard)
if os.path.isdir(args.logdir) and args.logdir != './logs/temp':
shutil.rmtree(args.logdir)
# GPU settings
#if args.gpu > -1:
# print("GPU COMPATIBLE RUN...")
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
# Create the environment
expert_domain = args.edomain
learner_domain = args.ldomain
env_params = {'expert': expert_domain, 'learner': learner_domain}
seed_dict = {'expert': args.seed, 'learner': args.seed}
env = create_env(env_params, seed_dict)
# Seeding
print('Seeding: {}'.format(args.seed))
tf.random.set_random_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
# Print experiment details
print('Booting with exp params: {}...'.format(args.exp_id))
time.sleep(2)
# Experiment parameters
mod = importlib.import_module('saved_params.'+args.exp_id+'_params')
params = mod.generate_params(env=env)
# Replay memory for each domain
replay_memory = create_replay_memory(env=env, params=params)
# Train the agent
agent = ddpg.DDPGAgent(params=params,
cmd_args=args,
env=env,
replay_memory=replay_memory,
save_expert_dir=args.save_expert_dir,
save_learner_dir=args.save_learner_dir,
save_dataset_dir=args.save_dataset_dir,
load_expert_dir=args.load_expert_dir,
load_learner_dir=args.load_learner_dir,
load_dataset_dir=args.load_dataset_dir,
logdir=args.logdir,
render=args.render,
gpu=args.gpu,
is_transfer=(args.agent_type=='transfer'))
if __name__ == '__main__':
print('----------------------------')
if args.agent_type == 'expert':
print("Training Expert")
print("Save={}".format(args.save_expert_dir))
agent.train_expert(from_ckpt=False)
elif args.agent_type == 'expert_from_ckpt':
print("Training Expert from Checkpoint")
print("Load={}".format(args.load_expert_dir))
print("Save={}".format(args.save_expert_dir))
agent.train_expert(from_ckpt=True)
elif args.agent_type == 'create_alignment_taskset':
print("Creating Alignment Taskset with")
print("Expert={}".format(args.load_expert_dir))
print("Self={}".format(args.load_learner_dir))
agent.create_alignment_taskset()
elif args.agent_type == 'gama':
print("GAMA with")
print("Expert={}".format(args.load_expert_dir))
print("Self={}".format(args.save_learner_dir))
agent.gama(from_ckpt=False)
elif args.agent_type == 'zeroshot':
print("Zeroshot Evaluation")
print("Expert={}".format(args.load_expert_dir))
print("Self={}".format(args.load_learner_dir))
agent.zeroshot()
elif args.agent_type == 'rollout_expert':
print("Rollout expert({})".format(args.load_expert_dir))
agent.rollout_expert()
elif args.agent_type == 'create_demo':
print("Create demonstrations dataset and save ({})".format(args.save_dataset_dir))
agent.create_demonstrations(num_demo=args.n_demo)
elif args.agent_type == 'bc':
print("Behavioral Cloning on Target Expert")
print("Dataset={}".format(args.load_dataset_dir))
print("Save={}".format(args.save_expert_dir))
agent.bc(num_demo=args.n_demo)
elif args.agent_type == 'bc_from_ckpt':
print("Behavioral Cloning on Target Expert from Checkpoint")
print("Dataset={}".format(args.load_dataset_dir))
print("Load={}".format(args.load_expert_dir))
print("Save={}".format(args.save_expert_dir))
agent.bc(from_ckpt=True)
else:
print("Unrecognized experiment type")
exit(1)
print('----------------------------')