-
Notifications
You must be signed in to change notification settings - Fork 0
/
lulesh-init.cc
654 lines (564 loc) · 17.8 KB
/
lulesh-init.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <cstdlib>
#include "lulesh.h"
/////////////////////////////////////////////////////////////////////
Domain::Domain(Int_t numRanks, Index_t colLoc,
Index_t rowLoc, Index_t planeLoc,
Index_t nx, Int_t tp, Int_t nr, Int_t balance, Int_t cost)
:
m_regElemSize(0),
m_regNumList(0),
m_regElemlist(0),
m_e_cut(Real_t(1.0e-7)),
m_p_cut(Real_t(1.0e-7)),
m_q_cut(Real_t(1.0e-7)),
m_v_cut(Real_t(1.0e-10)),
m_u_cut(Real_t(1.0e-7)),
m_hgcoef(Real_t(3.0)),
m_ss4o3(Real_t(4.0)/Real_t(3.0)),
m_qstop(Real_t(1.0e+12)),
m_monoq_max_slope(Real_t(1.0)),
m_monoq_limiter_mult(Real_t(2.0)),
m_qlc_monoq(Real_t(0.5)),
m_qqc_monoq(Real_t(2.0)/Real_t(3.0)),
m_qqc(Real_t(2.0)),
m_eosvmax(Real_t(1.0e+9)),
m_eosvmin(Real_t(1.0e-9)),
m_pmin(Real_t(0.)),
m_emin(Real_t(-1.0e+15)),
m_dvovmax(Real_t(0.1)),
m_refdens(Real_t(1.0)),
//
// set pointers to (potentially) "new'd" arrays to null to
// simplify deallocation.
//
m_nodeElemStart(0),
m_nodeElemCornerList(0)
{
Index_t edgeElems = nx ;
Index_t edgeNodes = edgeElems+1 ;
this->cost() = cost;
m_tp = tp ;
m_numRanks = numRanks ;
///////////////////////////////
// Initialize Sedov Mesh
///////////////////////////////
// construct a uniform box for this processor
m_colLoc = colLoc ;
m_rowLoc = rowLoc ;
m_planeLoc = planeLoc ;
m_sizeX = edgeElems ;
m_sizeY = edgeElems ;
m_sizeZ = edgeElems ;
m_numElem = edgeElems*edgeElems*edgeElems ;
m_numNode = edgeNodes*edgeNodes*edgeNodes ;
m_regNumList = new Index_t[numElem()] ; // material indexset
// Elem-centered
AllocateElemPersistent(numElem()) ;
// Node-centered
AllocateNodePersistent(numNode()) ;
SetupCommBuffers(edgeNodes);
// Basic Field Initialization
for (Index_t i=0; i<numElem(); ++i) {
e(i) = Real_t(0.0) ;
p(i) = Real_t(0.0) ;
q(i) = Real_t(0.0) ;
ss(i) = Real_t(0.0) ;
}
// Note - v initializes to 1.0, not 0.0!
for (Index_t i=0; i<numElem(); ++i) {
v(i) = Real_t(1.0) ;
}
for (Index_t i=0; i<numNode(); ++i) {
xd(i) = Real_t(0.0) ;
yd(i) = Real_t(0.0) ;
zd(i) = Real_t(0.0) ;
}
for (Index_t i=0; i<numNode(); ++i) {
xdd(i) = Real_t(0.0) ;
ydd(i) = Real_t(0.0) ;
zdd(i) = Real_t(0.0) ;
}
for (Index_t i=0; i<numNode(); ++i) {
nodalMass(i) = Real_t(0.0) ;
}
BuildMesh(nx, edgeNodes, edgeElems);
SetupThreadSupportStructures();
// Setup region index sets. For now, these are constant sized
// throughout the run, but could be changed every cycle to
// simulate effects of ALE on the lagrange solver
CreateRegionIndexSets(nr, balance);
// Setup symmetry nodesets
SetupSymmetryPlanes(edgeNodes);
// Setup element connectivities
SetupElementConnectivities(edgeElems);
// Setup symmetry planes and free surface boundary arrays
SetupBoundaryConditions(edgeElems);
// Setup defaults
// These can be changed (requires recompile) if you want to run
// with a fixed timestep, or to a different end time, but it's
// probably easier/better to just run a fixed number of timesteps
// using the -i flag in 2.x
dtfixed() = Real_t(-1.0e-6) ; // Negative means use courant condition
stoptime() = Real_t(1.0e-2); // *Real_t(edgeElems*tp/45.0) ;
// Initial conditions
deltatimemultlb() = Real_t(1.1) ;
deltatimemultub() = Real_t(1.2) ;
dtcourant() = Real_t(1.0e+20) ;
dthydro() = Real_t(1.0e+20) ;
dtmax() = Real_t(1.0e-2) ;
time() = Real_t(0.) ;
cycle() = Int_t(0) ;
// initialize field data
for (Index_t i=0; i<numElem(); ++i) {
Real_t x_local[8], y_local[8], z_local[8] ;
Index_t *elemToNode = nodelist(i) ;
for( Index_t lnode=0 ; lnode<8 ; ++lnode )
{
Index_t gnode = elemToNode[lnode];
x_local[lnode] = x(gnode);
y_local[lnode] = y(gnode);
z_local[lnode] = z(gnode);
}
// volume calculations
Real_t volume = CalcElemVolume(x_local, y_local, z_local );
volo(i) = volume ;
elemMass(i) = volume ;
for (Index_t j=0; j<8; ++j) {
Index_t idx = elemToNode[j] ;
nodalMass(idx) += volume / Real_t(8.0) ;
}
}
// deposit initial energy
// An energy of 3.948746e+7 is correct for a problem with
// 45 zones along a side - we need to scale it
const Real_t ebase = Real_t(3.948746e+7);
Real_t scale = (nx*m_tp)/Real_t(45.0);
Real_t einit = ebase*scale*scale*scale;
if (m_rowLoc + m_colLoc + m_planeLoc == 0) {
// Dump into the first zone (which we know is in the corner)
// of the domain that sits at the origin
e(0) = einit;
}
//set initial deltatime base on analytic CFL calculation
deltatime() = (Real_t(.5)*cbrt(volo(0)))/sqrt(Real_t(2.0)*einit);
} // End constructor
////////////////////////////////////////////////////////////////////////////////
Domain::~Domain()
{
delete [] m_regNumList;
delete [] m_nodeElemStart;
delete [] m_nodeElemCornerList;
delete [] m_regElemSize;
for (Index_t i=0 ; i<numReg() ; ++i) {
delete [] m_regElemlist[i];
}
delete [] m_regElemlist;
} // End destructor
////////////////////////////////////////////////////////////////////////////////
void
Domain::BuildMesh(Int_t nx, Int_t edgeNodes, Int_t edgeElems)
{
Index_t meshEdgeElems = m_tp*nx ;
// initialize nodal coordinates
Index_t nidx = 0 ;
Real_t tz = Real_t(1.125)*Real_t(m_planeLoc*nx)/Real_t(meshEdgeElems) ;
for (Index_t plane=0; plane<edgeNodes; ++plane) {
Real_t ty = Real_t(1.125)*Real_t(m_rowLoc*nx)/Real_t(meshEdgeElems) ;
for (Index_t row=0; row<edgeNodes; ++row) {
Real_t tx = Real_t(1.125)*Real_t(m_colLoc*nx)/Real_t(meshEdgeElems) ;
for (Index_t col=0; col<edgeNodes; ++col) {
x(nidx) = tx ;
y(nidx) = ty ;
z(nidx) = tz ;
++nidx ;
// tx += ds ; // may accumulate roundoff...
tx = Real_t(1.125)*Real_t(m_colLoc*nx+col+1)/Real_t(meshEdgeElems) ;
}
// ty += ds ; // may accumulate roundoff...
ty = Real_t(1.125)*Real_t(m_rowLoc*nx+row+1)/Real_t(meshEdgeElems) ;
}
// tz += ds ; // may accumulate roundoff...
tz = Real_t(1.125)*Real_t(m_planeLoc*nx+plane+1)/Real_t(meshEdgeElems) ;
}
// embed hexehedral elements in nodal point lattice
Index_t zidx = 0 ;
nidx = 0 ;
for (Index_t plane=0; plane<edgeElems; ++plane) {
for (Index_t row=0; row<edgeElems; ++row) {
for (Index_t col=0; col<edgeElems; ++col) {
Index_t *localNode = nodelist(zidx) ;
localNode[0] = nidx ;
localNode[1] = nidx + 1 ;
localNode[2] = nidx + edgeNodes + 1 ;
localNode[3] = nidx + edgeNodes ;
localNode[4] = nidx + edgeNodes*edgeNodes ;
localNode[5] = nidx + edgeNodes*edgeNodes + 1 ;
localNode[6] = nidx + edgeNodes*edgeNodes + edgeNodes + 1 ;
localNode[7] = nidx + edgeNodes*edgeNodes + edgeNodes ;
++zidx ;
++nidx ;
}
++nidx ;
}
nidx += edgeNodes ;
}
}
////////////////////////////////////////////////////////////////////////////////
void
Domain::SetupThreadSupportStructures()
{
// set up node-centered indexing of elements
Index_t *nodeElemCount = new Index_t[numNode()] ;
for (Index_t i=0; i<numNode(); ++i) {
nodeElemCount[i] = 0 ;
}
for (Index_t i=0; i<numElem(); ++i) {
Index_t *nl = nodelist(i) ;
for (Index_t j=0; j < 8; ++j) {
++(nodeElemCount[nl[j]] );
}
}
m_nodeElemStart = new Index_t[numNode()+1] ;
m_nodeElemStart[0] = 0;
for (Index_t i=1; i <= numNode(); ++i) {
m_nodeElemStart[i] =
m_nodeElemStart[i-1] + nodeElemCount[i-1] ;
}
m_nodeElemCornerList = new Index_t[m_nodeElemStart[numNode()]];
for (Index_t i=0; i < numNode(); ++i) {
nodeElemCount[i] = 0;
}
for (Index_t i=0; i < numElem(); ++i) {
Index_t *nl = nodelist(i) ;
for (Index_t j=0; j < 8; ++j) {
Index_t m = nl[j];
Index_t k = i*8 + j ;
Index_t offset = m_nodeElemStart[m] + nodeElemCount[m] ;
m_nodeElemCornerList[offset] = k;
++(nodeElemCount[m]) ;
}
}
Index_t clSize = m_nodeElemStart[numNode()] ;
for (Index_t i=0; i < clSize; ++i) {
Index_t clv = m_nodeElemCornerList[i] ;
if ((clv < 0) || (clv > numElem()*8)) {
fprintf(stderr,
"AllocateNodeElemIndexes(): nodeElemCornerList entry out of range!\n");
exit(-1);
}
}
delete [] nodeElemCount ;
}
////////////////////////////////////////////////////////////////////////////////
void
Domain::SetupCommBuffers(Int_t edgeNodes)
{
// allocate a buffer large enough for nodal ghost data
Index_t maxEdgeSize = MAX(this->sizeX(), MAX(this->sizeY(), this->sizeZ()))+1 ;
m_maxPlaneSize = CACHE_ALIGN_REAL(maxEdgeSize*maxEdgeSize) ;
m_maxEdgeSize = CACHE_ALIGN_REAL(maxEdgeSize) ;
// assume communication to 6 neighbors by default
m_rowMin = (m_rowLoc == 0) ? 0 : 1;
m_rowMax = (m_rowLoc == m_tp-1) ? 0 : 1;
m_colMin = (m_colLoc == 0) ? 0 : 1;
m_colMax = (m_colLoc == m_tp-1) ? 0 : 1;
m_planeMin = (m_planeLoc == 0) ? 0 : 1;
m_planeMax = (m_planeLoc == m_tp-1) ? 0 : 1;
// Boundary nodesets
if (m_colLoc == 0)
m_symmX.resize(edgeNodes*edgeNodes);
if (m_rowLoc == 0)
m_symmY.resize(edgeNodes*edgeNodes);
if (m_planeLoc == 0)
m_symmZ.resize(edgeNodes*edgeNodes);
}
////////////////////////////////////////////////////////////////////////////////
void
Domain::CreateRegionIndexSets(Int_t nr, Int_t balance)
{
srand(0);
Index_t myRank = 0;
this->numReg() = nr;
m_regElemSize = new Index_t[numReg()];
m_regElemlist = new Index_t*[numReg()];
Index_t nextIndex = 0;
//if we only have one region just fill it
// Fill out the regNumList with material numbers, which are always
// the region index plus one
if(numReg() == 1) {
while (nextIndex < numElem()) {
this->regNumList(nextIndex) = 1;
nextIndex++;
}
regElemSize(0) = 0;
}
//If we have more than one region distribute the elements.
else {
Int_t regionNum;
Int_t regionVar;
Int_t lastReg = -1;
Int_t binSize;
Index_t elements;
Index_t runto = 0;
Int_t costDenominator = 0;
Int_t* regBinEnd = new Int_t[numReg()];
//Determine the relative weights of all the regions. This is based off the -b flag. Balance is the value passed into b.
for (Index_t i=0 ; i<numReg() ; ++i) {
regElemSize(i) = 0;
costDenominator += pow((i+1), balance); //Total sum of all regions weights
regBinEnd[i] = costDenominator; //Chance of hitting a given region is (regBinEnd[i] - regBinEdn[i-1])/costDenominator
}
//Until all elements are assigned
while (nextIndex < numElem()) {
//pick the region
regionVar = rand() % costDenominator;
Index_t i = 0;
while(regionVar >= regBinEnd[i])
i++;
//rotate the regions based on MPI rank. Rotation is Rank % NumRegions this makes each domain have a different region with
//the highest representation
regionNum = ((i + myRank) % numReg()) + 1;
// make sure we don't pick the same region twice in a row
while(regionNum == lastReg) {
regionVar = rand() % costDenominator;
i = 0;
while(regionVar >= regBinEnd[i])
i++;
regionNum = ((i + myRank) % numReg()) + 1;
}
//Pick the bin size of the region and determine the number of elements.
binSize = rand() % 1000;
if(binSize < 773) {
elements = rand() % 15 + 1;
}
else if(binSize < 937) {
elements = rand() % 16 + 16;
}
else if(binSize < 970) {
elements = rand() % 32 + 32;
}
else if(binSize < 974) {
elements = rand() % 64 + 64;
}
else if(binSize < 978) {
elements = rand() % 128 + 128;
}
else if(binSize < 981) {
elements = rand() % 256 + 256;
}
else
elements = rand() % 1537 + 512;
runto = elements + nextIndex;
//Store the elements. If we hit the end before we run out of elements then just stop.
while (nextIndex < runto && nextIndex < numElem()) {
this->regNumList(nextIndex) = regionNum;
nextIndex++;
}
lastReg = regionNum;
}
delete [] regBinEnd;
}
// Convert regNumList to region index sets
// First, count size of each region
for (Index_t i=0 ; i<numElem() ; ++i) {
int r = this->regNumList(i)-1; // region index == regnum-1
regElemSize(r)++;
}
// Second, allocate each region index set
for (Index_t i=0 ; i<numReg() ; ++i) {
m_regElemlist[i] = new Index_t[regElemSize(i)];
regElemSize(i) = 0;
}
// Third, fill index sets
for (Index_t i=0 ; i<numElem() ; ++i) {
Index_t r = regNumList(i)-1; // region index == regnum-1
Index_t regndx = regElemSize(r)++; // Note increment
regElemlist(r,regndx) = i;
}
}
/////////////////////////////////////////////////////////////
void
Domain::SetupSymmetryPlanes(Int_t edgeNodes)
{
Index_t nidx = 0 ;
for (Index_t i=0; i<edgeNodes; ++i) {
Index_t planeInc = i*edgeNodes*edgeNodes ;
Index_t rowInc = i*edgeNodes ;
for (Index_t j=0; j<edgeNodes; ++j) {
if (m_planeLoc == 0) {
m_symmZ[nidx] = rowInc + j ;
}
if (m_rowLoc == 0) {
m_symmY[nidx] = planeInc + j ;
}
if (m_colLoc == 0) {
m_symmX[nidx] = planeInc + j*edgeNodes ;
}
++nidx ;
}
}
}
/////////////////////////////////////////////////////////////
void
Domain::SetupElementConnectivities(Int_t edgeElems)
{
lxim(0) = 0 ;
for (Index_t i=1; i<numElem(); ++i) {
lxim(i) = i-1 ;
lxip(i-1) = i ;
}
lxip(numElem()-1) = numElem()-1 ;
for (Index_t i=0; i<edgeElems; ++i) {
letam(i) = i ;
letap(numElem()-edgeElems+i) = numElem()-edgeElems+i ;
}
for (Index_t i=edgeElems; i<numElem(); ++i) {
letam(i) = i-edgeElems ;
letap(i-edgeElems) = i ;
}
for (Index_t i=0; i<edgeElems*edgeElems; ++i) {
lzetam(i) = i ;
lzetap(numElem()-edgeElems*edgeElems+i) = numElem()-edgeElems*edgeElems+i ;
}
for (Index_t i=edgeElems*edgeElems; i<numElem(); ++i) {
lzetam(i) = i - edgeElems*edgeElems ;
lzetap(i-edgeElems*edgeElems) = i ;
}
}
/////////////////////////////////////////////////////////////
void
Domain::SetupBoundaryConditions(Int_t edgeElems)
{
Index_t ghostIdx[6] ; // offsets to ghost locations
// set up boundary condition information
for (Index_t i=0; i<numElem(); ++i) {
elemBC(i) = Int_t(0) ;
}
for (Index_t i=0; i<6; ++i) {
ghostIdx[i] = INT_MIN ;
}
Int_t pidx = numElem() ;
if (m_planeMin != 0) {
ghostIdx[0] = pidx ;
pidx += sizeX()*sizeY() ;
}
if (m_planeMax != 0) {
ghostIdx[1] = pidx ;
pidx += sizeX()*sizeY() ;
}
if (m_rowMin != 0) {
ghostIdx[2] = pidx ;
pidx += sizeX()*sizeZ() ;
}
if (m_rowMax != 0) {
ghostIdx[3] = pidx ;
pidx += sizeX()*sizeZ() ;
}
if (m_colMin != 0) {
ghostIdx[4] = pidx ;
pidx += sizeY()*sizeZ() ;
}
if (m_colMax != 0) {
ghostIdx[5] = pidx ;
}
// symmetry plane or free surface BCs
for (Index_t i=0; i<edgeElems; ++i) {
Index_t planeInc = i*edgeElems*edgeElems ;
Index_t rowInc = i*edgeElems ;
for (Index_t j=0; j<edgeElems; ++j) {
if (m_planeLoc == 0) {
elemBC(rowInc+j) |= ZETA_M_SYMM ;
}
else {
elemBC(rowInc+j) |= ZETA_M_COMM ;
lzetam(rowInc+j) = ghostIdx[0] + rowInc + j ;
}
if (m_planeLoc == m_tp-1) {
elemBC(rowInc+j+numElem()-edgeElems*edgeElems) |=
ZETA_P_FREE;
}
else {
elemBC(rowInc+j+numElem()-edgeElems*edgeElems) |=
ZETA_P_COMM ;
lzetap(rowInc+j+numElem()-edgeElems*edgeElems) =
ghostIdx[1] + rowInc + j ;
}
if (m_rowLoc == 0) {
elemBC(planeInc+j) |= ETA_M_SYMM ;
}
else {
elemBC(planeInc+j) |= ETA_M_COMM ;
letam(planeInc+j) = ghostIdx[2] + rowInc + j ;
}
if (m_rowLoc == m_tp-1) {
elemBC(planeInc+j+edgeElems*edgeElems-edgeElems) |=
ETA_P_FREE ;
}
else {
elemBC(planeInc+j+edgeElems*edgeElems-edgeElems) |=
ETA_P_COMM ;
letap(planeInc+j+edgeElems*edgeElems-edgeElems) =
ghostIdx[3] + rowInc + j ;
}
if (m_colLoc == 0) {
elemBC(planeInc+j*edgeElems) |= XI_M_SYMM ;
}
else {
elemBC(planeInc+j*edgeElems) |= XI_M_COMM ;
lxim(planeInc+j*edgeElems) = ghostIdx[4] + rowInc + j ;
}
if (m_colLoc == m_tp-1) {
elemBC(planeInc+j*edgeElems+edgeElems-1) |= XI_P_FREE ;
}
else {
elemBC(planeInc+j*edgeElems+edgeElems-1) |= XI_P_COMM ;
lxip(planeInc+j*edgeElems+edgeElems-1) =
ghostIdx[5] + rowInc + j ;
}
}
}
}
///////////////////////////////////////////////////////////////////////////
void InitMeshDecomp(Int_t numRanks, Int_t myRank,
Int_t *col, Int_t *row, Int_t *plane, Int_t *side)
{
Int_t testProcs;
Int_t dx, dy, dz;
Int_t myDom;
// Assume cube processor layout for now
testProcs = Int_t(cbrt(Real_t(numRanks))+0.5) ;
if (testProcs*testProcs*testProcs != numRanks) {
printf("Num processors must be a cube of an integer (1, 8, 27, ...)\n") ;
exit(-1);
}
if (sizeof(Real_t) != 4 && sizeof(Real_t) != 8) {
printf("MPI operations only support float and double right now...\n");
exit(-1);
}
dx = testProcs ;
dy = testProcs ;
dz = testProcs ;
// temporary test
if (dx*dy*dz != numRanks) {
printf("error -- must have as many domains as procs\n") ;
exit(-1);
}
Int_t remainder = dx*dy*dz % numRanks ;
if (myRank < remainder) {
myDom = myRank*( 1+ (dx*dy*dz / numRanks)) ;
}
else {
myDom = remainder*( 1+ (dx*dy*dz / numRanks)) +
(myRank - remainder)*(dx*dy*dz/numRanks) ;
}
*col = myDom % dx ;
*row = (myDom / dx) % dy ;
*plane = myDom / (dx*dy) ;
*side = testProcs;
return;
}