-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwriteDerivedQuantities.py
317 lines (249 loc) · 10.8 KB
/
writeDerivedQuantities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
#!/usr/bin/python
from __future__ import print_function
from pprint import pprint
from collections import defaultdict
import json, sys
import requests
requests.packages.urllib3.disable_warnings(
requests.packages.urllib3.exceptions.InsecureRequestWarning
)
import argparse
from datetime import datetime, timedelta
import time
import dateutil.parser
import hashlib
import ConfigParser
import logging
from commonHelpers.logger import logger
logger = logger.getChild("QMonit")
from influxdb import InfluxDBClient
import Client
import mysql.connector
parser = argparse.ArgumentParser(description="Derived quantities writer")
parser.add_argument("--debug", action="store_true", help="print debug messages")
parser.add_argument("--skipSubmit", action="store_true", help="do not upload to DB")
args = parser.parse_args()
if args.debug:
logging.getLogger("QMonit").setLevel(logging.DEBUG)
epoch = datetime.utcfromtimestamp(0)
def unix_time_nanos(dt):
return (dt - epoch).total_seconds() * 1e9
def get_average_jobs(time_intervals, values, index, debug=False, skipFirst=False):
total_jobs = 0
for value in values[:time_intervals]:
total_jobs += value[index]
if debug:
logger.debug(value[index])
mean = float(total_jobs) / len(values[:time_intervals])
if isinstance(mean, float):
return round(mean, 2)
else:
logger.warning("Got unexpected mean job number, returning 0.0")
return 0.0
def construct_valdict_from_lists(columns, values):
d = dict(zip(columns, values))
d.pop("time", None)
return d
def correctTypes(fields):
if not isinstance(fields["resource_factor"], float):
fields["resource_factor"] = float(fields["resource_factor"])
return fields
def getUnixFromTimeStamp(time):
time = time.replace("T", " ").replace("Z", "")
hash = time[-9:]
_time = time[:-10]
try:
dt = datetime.strptime(_time, "%Y-%m-%d %H:%M:%S")
return int(unix_time_nanos(dt)) + int(hash)
except ValueError:
return 0
def get_pq_from_mysql(cursor):
cursor.execute("SELECT DISTINCT panda_queue, prod_source, resource FROM jobs;")
return [(pq, prod_source, resource) for pq, prod_source, resource in cursor]
def get_derived_quantities(distinct_sets, series, series_30d, pqs_mysql):
mysql_data = defaultdict(lambda: defaultdict(lambda: defaultdict(dict)))
pqs_in_idb = []
for rs in distinct_sets.keys():
rs = rs[1] # rs is a tuple
data = get_derived_quantities_for_keyset(rs, series, series_30d)
pqs_in_idb.append((rs["panda_queue"], rs["prod_source"], rs["resource"]))
if data is None:
mysql_data[rs["panda_queue"]][rs["prod_source"]][rs["resource"]][
rs["job_status"]
] = None
mysql_data[rs["panda_queue"]][rs["prod_source"]][rs["resource"]][
"tags"
] = None
else:
if not "values" in data:
mysql_data[rs["panda_queue"]][rs["prod_source"]][rs["resource"]][
rs["job_status"]
] = None
else:
mysql_data[rs["panda_queue"]][rs["prod_source"]][rs["resource"]][
rs["job_status"]
] = data["values"]
mysql_data[rs["panda_queue"]][rs["prod_source"]][rs["resource"]][
"tags"
] = data["tags"]
# now let's run again over the PQs from the MySQL db to make sure non-existant PQs are correctly handled
missing_pqs = sorted(set(pqs_mysql) - set(pqs_in_idb))
return mysql_data, missing_pqs
def get_derived_quantities_for_keyset(rs, series, series_30d):
logger.debug(
"Queue: %s Prod source: %s Resource: %s State: %s"
% (rs["panda_queue"], rs["prod_source"], rs["resource"], rs["job_status"])
)
filtered_points = [
p
for p in series
if p["tags"]["panda_queue"] == rs["panda_queue"]
and p["tags"]["prod_source"] == rs["prod_source"]
and p["tags"]["resource"] == rs["resource"]
and p["tags"]["job_status"] == rs["job_status"]
]
filtered_points_30d = [
p
for p in series_30d
if p["tags"]["panda_queue"] == rs["panda_queue"]
and p["tags"]["prod_source"] == rs["prod_source"]
and p["tags"]["resource"] == rs["resource"]
and p["tags"]["job_status"] == rs["job_status"]
]
if len(filtered_points) == 0:
logger.debug("Got no points for this 10m set of keys.")
return None
if len(filtered_points_30d) == 0:
logger.debug("Got no points for this 1d set of keys.")
return None
elif len(filtered_points) > 1 or len(filtered_points_30d) > 1:
logger.debug(
"Uhh, oh, got more than one point? This is weird! I will use the first one and hope this is what you meant to do."
)
# print(filtered_points[0])
# print(filtered_points[1])
filtered_points = filtered_points[0]
filtered_points_30d = filtered_points_30d[0]
values = filtered_points["values"]
values_30d = filtered_points_30d["values"]
tags = filtered_points["tags"]
columns = filtered_points["columns"]
columns_30d = filtered_points_30d["columns"]
values.reverse() # reverse in place, want to have latest points first
values_30d.reverse() # reverse in place, want to have latest points first
# get me the last (most recent) point, because this is the one I want to overwrite.
latest_value = values[0]
data = {}
data["current"] = latest_value[columns.index("jobs")]
data["avg1h"] = get_average_jobs(6, values, columns.index("jobs"))
data["avg6h"] = get_average_jobs(36, values, columns.index("jobs"))
data["avg12h"] = get_average_jobs(72, values, columns.index("jobs"))
data["avg24h"] = get_average_jobs(144, values, columns.index("jobs"))
data["avg7d"] = get_average_jobs(
7, values_30d, columns_30d.index("jobs"), debug=args.debug, skipFirst=True
)
data["avg30d"] = get_average_jobs(
30, values_30d, columns_30d.index("jobs"), skipFirst=True
)
# print(data)
return {"tags": tags, "values": data}
def get_list_to_upload(data):
for panda_queue, d in data.iteritems():
if panda_queue == "RAL-LCG2_MCORE_TEMP":
logger.warning("We have some weird value here")
for prod_source, resources in d.iteritems():
for resource, job_states in resources.iteritems():
temp_data = {}
for job_status, job_data in job_states.iteritems():
if job_data is None:
continue
if job_status == "tags":
tags = job_data
else:
temp_data[job_status + "_jobs"] = job_data["current"]
if job_status in ["assigned", "activated", "failed", "running"]:
for average in [
"avg1h",
"avg6h",
"avg12h",
"avg24h",
"avg7d",
"avg30d",
]:
temp_data[
average + "_" + job_status + "_jobs"
] = job_data[average]
if len(temp_data) == 0:
continue
add_point = """INSERT INTO jobs (panda_queue,prod_source, resource) VALUES ("{panda_queue}", "{prod_source}", "{resource}") ON DUPLICATE KEY UPDATE """.format(
panda_queue=panda_queue, prod_source=prod_source, resource=resource
)
for field, value in temp_data.iteritems():
add_point += """{field}={value}, """.format(
field=field, value=value
)
add_point = add_point[:-2] + """;"""
logger.debug(add_point)
yield add_point
def run():
config = ConfigParser.ConfigParser()
config.read("config.cfg")
password = config.get("credentials", "password")
username = config.get("credentials", "username")
database = config.get("credentials", "database")
logger.info("Constructing InfluxDB queries.")
logger.info("Getting distinct key sets")
client = InfluxDBClient(
"dbod-eschanet.cern.ch", 8080, username, password, "monit_jobs", True, False
)
rs_distinct_sets = client.query(
"""select panda_queue, prod_source, resource, job_status, jobs from "1h"."jobs" where time > now() - 30d and "prod_source" != '' group by panda_queue, prod_source, resource, job_status limit 1"""
)
logger.info("Getting 10m data")
rs_result_24h = client.query(
"""select * from "10m"."jobs" where time > now() - 24h and "prod_source" != '' group by panda_queue, prod_source, resource, job_status """
)
logger.info("Got 10m data")
raw_dict_24h = rs_result_24h.raw
series_24h = raw_dict_24h["series"]
logger.info("Getting 1d data")
rs_result_30d = client.query(
"""select * from "1d"."jobs" where time > now() - 30d and "prod_source" != '' group by panda_queue, prod_source, resource, job_status """
)
logger.info("Got 1d data")
raw_dict_30d = rs_result_30d.raw
series_30d = raw_dict_30d["series"]
logger.info("Got data from InfluxDB.")
logger.info("Constructing MySQL connector.")
cnx = mysql.connector.connect(
user="monit",
password=password,
host="dbod-sql-graf.cern.ch",
port=5501,
database="monit_jobs",
)
cursor = cnx.cursor()
selector = cnx.cursor()
# in mysql there may still be unique pq-resource combinations that don't exist anymore
pqs_mysql = get_pq_from_mysql(selector)
logger.info("Building data.")
data, missing_pqs = get_derived_quantities(
rs_distinct_sets, series_24h, series_30d, pqs_mysql
)
for point in get_list_to_upload(data):
if args.debug:
print(point)
if not args.skipSubmit:
cursor.execute(point)
for pq, prod_source, resource in missing_pqs:
cursor.execute(
'DELETE FROM jobs WHERE panda_queue = "{panda_queue}" AND resource = "{resource}" AND prod_source = "{prod_source}"'.format(
panda_queue=pq, resource=resource, prod_source=prod_source
)
)
if not args.skipSubmit:
cnx.commit()
cursor.close()
cnx.close()
if __name__ == "__main__":
run()