-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathplot_predictions.py
59 lines (53 loc) · 2.73 KB
/
plot_predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import matplotlib.pyplot as plt
import config
import pandas as pd
from fwdfiles.general_functions import plotTimeSeries
import os
import numpy as np
def plotCrimePredictions(clusters, realCrimes, forecasts, file_path):
for c in clusters.Cluster.values:
df = realCrimes['C{}_Crimes'.format(c)]
testPrediction = forecasts['C{}_Forecast'.format(c)]
plotTimeSeries(
df, testPrediction, '{}/{}_cluster({}).png'.format('observations', file_path, c))
if __name__ == '__main__':
data = pd.read_pickle('DPSUSC.pkl')
# Uniform grid predictions
if config.grid_prediction == 1:
print("Plotting grid predictions...")
for gridshape in config.ug_gridshapes:
for periodsAhead in config.periodsAhead_list:
for method in config.ug_methods:
file_path = "{}/{}_predictions_grid({},{})_ignore({})_ahead({})_threshold({})_dist({})".format(
method, method, *gridshape, config.ignoreFirst, periodsAhead, 0, 0
)
data = pd.read_pickle('results/{}.pkl'.format(file_path))
[clusters, realCrimes, forecasts] = data
# save it to disk
os.makedirs(os.path.abspath(
"observations/"), exist_ok=True)
os.makedirs(os.path.abspath(
"observations/{}".format(method)), exist_ok=True)
plotCrimePredictions(
clusters, realCrimes, forecasts, file_path)
# Cluster predictions
if config.cluster_prediction == 1:
print("Ploting cluster predictions...")
for threshold in config.c_thresholds:
print("Cluster plotting with threshold {}".format(threshold))
for gridshape in config.c_gridshapes:
for periodsAhead in config.periodsAhead_list:
for method in config.c_methods:
file_path = "{}/{}_predictions_grid({},{})_ignore({})_ahead({})_threshold({})_dist({})".format(
method, method, *gridshape, config.ignoreFirst, periodsAhead, threshold, 1
)
os.makedirs(os.path.abspath(
"observations/"), exist_ok=True)
os.makedirs(os.path.abspath(
"observations/{}".format(method)), exist_ok=True)
data = pd.read_pickle(
'results/{}.pkl'.format(file_path))
[clusters, realCrimes, forecasts] = data
plotCrimePredictions(
clusters, realCrimes, forecasts, file_path)
print("Cluster predictions done!")