-
Notifications
You must be signed in to change notification settings - Fork 115
/
image_train.py
616 lines (551 loc) · 25 KB
/
image_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
import os
import io
import copy
import grpc
import shutil
import functools
import numpy as np
import tensorflow as tf
from PIL import Image
from time import time
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2_grpc
from prodigy.components.loaders import get_stream
from prodigy.components.preprocess import fetch_images
from prodigy.core import recipe, recipe_args
from prodigy.util import log, b64_uri_to_bytes, split_string
from object_detection.utils import config_util, label_map_util
from object_detection.utils import dataset_util
from object_detection.builders import model_builder
from object_detection.model_lib import create_model_fn
from object_detection.inputs import create_train_input_fn
from object_detection.inputs import create_eval_input_fn
from object_detection.inputs import create_predict_input_fn
from object_detection.model_hparams import create_hparams
@recipe(
"image.trainmodel",
dataset=recipe_args["dataset"],
source=recipe_args["source"],
config_path=("Path to tfodapi config file", "positional", None, str),
ip=("Tensorflow serving ip", "positional", None, str),
port=("Tensorflow serving port", "positional", None, str),
model_name=("Tensorflow serving model name", "positional", None, str),
label_map_path=(("Labelmap.pbtxt path. Overrides the value given in "
"tfodapi config"), "option", "lmp", float, None, None),
label=(("One or more comma-separated labels. "
"If not given inferred from labelmap"),
"option", "l", split_string, None, None),
model_dir=("Path to save model checkpoints and Tensorboard events",
"option", "md", str, None, os.path.join(".", "model_dir")),
export_dir=("Path to save temporary SavedModels for Tensorflow Serving",
"option", "ed", str, None, os.path.join(".", "export_dir")),
data_dir=("Path to store temporary TFrecords used for training",
"option", "dd", str, None, os.path.join(".", "data_dir")),
steps_per_epoch=(("Number of training steps per epoch. "
"If -1, inferred automatically. "
"If higher than the dataset size, "
"the dataset is looped over"),
"option", "spe", int, None, -1),
threshold=("Score threshold", "option", "t", float, None, 0.5),
temp_files_num=("Number of recent temp files to keep",
"option", "tfn", int, None, 5),
max_checkpoints_num=("Number of recent model checkpoints to keep",
"option", "mcn", int, None, 5),
run_eval=(("Whether to run evaluation. If enabling, eval_config "
"and eval_input_reader must be set in tfodapi config"),
"flag", "E", bool),
eval_steps=("Number of steps for evaluation",
"option", "es", int, None, 50),
use_display_name=("Whether to use display_name in label_map.pbtxt",
"flag", "D", bool),
tf_logging_level=("Log level for Tensorflow", "option",
"tl", int, (10, 20, 30, 40, 50), 40),
api=recipe_args["api"],
exclude=recipe_args["exclude"],
)
def image_trainmodel(dataset, source, config_path, ip, port, model_name,
label_map_path=None, label=None, model_dir="model_dir",
export_dir="export_dir", data_dir="data_dir",
steps_per_epoch=-1, threshold=0.5, temp_files_num=5,
max_checkpoints_num=5, run_eval=False, eval_steps=50,
use_display_name=False, tf_logging_level=40, api=None,
exclude=None):
tf.logging.set_verbosity(tf_logging_level)
_create_dir(model_dir)
_create_dir(export_dir)
_create_dir(data_dir)
log("Building the Tensorflow Object Detection API model")
run_config = tf.estimator.RunConfig(model_dir=model_dir,
keep_checkpoint_max=max_checkpoints_num
)
odapi_configs = config_util.get_configs_from_pipeline_file(config_path)
if label_map_path:
log("Overriding label_map_path given in the odapi config file")
odapi_configs["train_input_config"].label_map_path = label_map_path
odapi_configs["eval_input_config"].label_map_path = label_map_path
else:
label_map_path = odapi_configs["train_input_config"].label_map_path
# Set input reader config low to make sure you don't hit memory errors
train_input_config = odapi_configs["train_input_config"]
train_input_config.shuffle = False
train_input_config.num_readers = 1
train_input_config.num_parallel_batches = 1
train_input_config.num_prefetch_batches = -1 # autotune
train_input_config.queue_capacity = 2
train_input_config.min_after_dequeue = 1
train_input_config.read_block_length = 10
train_input_config.prefetch_size = 2
train_input_config.num_parallel_map_calls = 2
# key class names
reverse_class_mapping_dict = label_map_util.get_label_map_dict(
label_map_path=label_map_path,
use_display_name=use_display_name)
if label is None:
label = [k for k in reverse_class_mapping_dict.keys()]
# key int
class_mapping_dict = {v: k for k, v in reverse_class_mapping_dict.items()}
detection_model_fn = functools.partial(model_builder.build,
model_config=odapi_configs["model"])
model_func = create_model_fn(detection_model_fn,
hparams=create_hparams(None),
configs=odapi_configs, use_tpu=False,
postprocess_on_cpu=False)
estimator = tf.estimator.Estimator(model_fn=model_func, config=run_config)
if estimator.latest_checkpoint() is None:
log(("Running a single dummy training step! "
"Else saving SavedModel for Tensorflow Serving does not work"))
train_input_config = odapi_configs["train_input_config"]
train_input_fn = create_train_input_fn(
train_config=odapi_configs["train_config"],
model_config=odapi_configs["model"],
train_input_config=train_input_config)
estimator.train(input_fn=train_input_fn,
steps=1)
_export_saved_model(export_dir, estimator, odapi_configs)
log("Make sure to start Tensorflow Serving before opening Prodigy")
log(("Training and evaluation (if enabled) can be monitored by "
"pointing Tensorboard to {} directory").format(model_dir))
stream = get_stream(source, api=api, loader="images", input_key="image")
stream = fetch_images(stream)
update_fn = functools.partial(
update_odapi_model, estimator=estimator,
data_dir=data_dir,
reverse_class_mapping_dict=reverse_class_mapping_dict,
odapi_configs=odapi_configs,
steps_per_epoch=steps_per_epoch,
export_dir=export_dir, run_eval=run_eval,
eval_steps=eval_steps,
temp_files_num=temp_files_num)
return {
"view_id": "image_manual",
"dataset": dataset,
"stream": get_image_stream(stream, class_mapping_dict,
ip, port, model_name, float(threshold)),
"exclude": exclude,
"update": update_fn,
# "progress": lambda *args, **kwargs: 0,
'config': {
'label': ', '.join(label) if label is not None else 'all',
'labels': label, # Selectable label options,
}
}
def get_image_stream(stream, class_mapping_dict, ip, port, model_name, thresh):
"""Function that gets the image stream with bounding box information
Arguments:
stream (iterable): input image image stream
class_mapping_dict (dict): with key as int and value as class name
ip (str): tensorflow serving IP
port (str): tensorflow serving port
model_name (str): model name in tensorflow serving
thresh (float): score threshold for predictions
Returns:
A generator that constantly yields a prodigy task
"""
for eg in stream:
if not eg["image"].startswith("data"):
msg = "Expected base64-encoded data URI, but got: '{}'."
raise ValueError(msg.format(eg["image"][:100]))
pil_image = Image.open(io.BytesIO(b64_uri_to_bytes(eg["image"])))
predictions = get_predictions(eg, class_mapping_dict,
ip, port, model_name)
eg["width"] = pil_image.width
eg["height"] = pil_image.height
eg["spans"] = [get_span(pred, pil_image)
for pred in zip(*predictions) if pred[2] >= thresh]
log("Using threshold {}, got {} predictions for file {}".format(
thresh, len(eg["spans"]), eg["meta"]["file"]))
task = copy.deepcopy(eg)
yield task
def update_odapi_model(tasks, estimator, data_dir, reverse_class_mapping_dict,
odapi_configs, steps_per_epoch, export_dir, run_eval,
eval_steps, temp_files_num):
"""Update the object detection api model with annotations from prodigy
Arguments:
tasks (iterable): prodigy's tasks
estimator (tf.estimator.Estimator): detection model as tf estimator
data_dir (str): directory to store temp train TF-Records
reverse_class_mapping_dict (dict): key as class name and value as int
odapi_configs (dict): Object detection api pipeline.config object
steps_per_epoch (int): Number of training steps.
export_dir (str): directory to export temp SavedModels for TF serving
run_eval (bool): Whether to run evaluation
eval_steps (int): Number of steps for evaluations
temp_files_num (int): Number of recent files/folders to keep in export
and data directories
Returns:
None if run_eval is False else evaluation loss (float)
"""
train_data_name = "{}_train.record".format(int(time()))
num_examples = _write_tf_record(
tasks=tasks,
output_file=os.path.join(data_dir,
train_data_name),
reverse_class_mapping_dict=reverse_class_mapping_dict
)
if num_examples == 0:
log("No training data found! Skipping model update")
return None
train_input_config = odapi_configs["train_input_config"]
# delete existing input paths
old_input_paths = train_input_config.tf_record_input_reader.input_path
for i in range(len(old_input_paths)):
del train_input_config.tf_record_input_reader.input_path[i]
train_input_config.tf_record_input_reader.input_path.append(
os.path.join(data_dir,
train_data_name
))
train_input_fn = create_train_input_fn(
train_config=odapi_configs["train_config"],
model_config=odapi_configs["model"],
train_input_config=train_input_config)
train_steps = steps_per_epoch
if train_steps in (0, -1):
train_steps = num_examples
log("Training for {} steps".format(train_steps))
estimator.train(input_fn=train_input_fn,
steps=train_steps)
_export_saved_model(export_dir, estimator, odapi_configs)
# Keep only recent temp_files_num in temp dirs
_remove_garbage(folder=export_dir,
max_num_to_keep=temp_files_num,
garbage_type="folder",
filter_string=None)
_remove_garbage(folder=data_dir,
max_num_to_keep=temp_files_num,
garbage_type="file",
filter_string=".record")
if run_eval:
log("Running evaluation for {} steps".format(eval_steps))
eval_input_config = odapi_configs["eval_input_config"]
eval_input_config.shuffle = False
eval_input_config.num_readers = 1
eval_input_config.num_parallel_batches = 1
eval_input_config.num_prefetch_batches = -1 # autotune
eval_input_config.queue_capacity = 2
eval_input_config.min_after_dequeue = 1
eval_input_config.read_block_length = 10
eval_input_config.prefetch_size = 2
eval_input_config.num_parallel_map_calls = 2
eval_input_function = create_eval_input_fn(
eval_config=odapi_configs["eval_config"],
eval_input_config=eval_input_config,
model_config=odapi_configs["model"])
eval_dict = estimator.evaluate(input_fn=eval_input_function,
steps=eval_steps)
return eval_dict["loss"]
else:
return None
def get_predictions(single_stream, class_mapping_dict, ip, port, model_name):
"""Gets predictions for a single image using Tensorflow serving
Arguments:
single_stream (dict): A single prodigy stream
class_mapping_dict (dict): with key as int and value as class name
ip (str): tensorflow serving IP
port (str): tensorflow serving port
model_name (str): model name in tensorflow serving
Returns:
A tuple containing numpy arrays:
(class_ids, class_names, scores, boxes)
"""
image_byte_stream = b64_uri_to_bytes(single_stream["image"])
encoded_image_io = io.BytesIO(image_byte_stream)
image = Image.open(encoded_image_io)
width, height = image.size
filename = str(single_stream["meta"]["file"])
file_extension = filename.split(".")[1].lower()
if file_extension == "png":
image_format = b'png'
elif file_extension in ("jpg", "jpeg"):
image_format = b'jpg'
else:
log(("Only 'png', 'jpeg' or 'jpg' files are supported by ODAPI. "
"Got {}. Thus treating it as `jpg` file. "
"Might cause errors".format(file_extension)
))
image_format = b'jpg'
filename = filename.encode("utf-8")
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(image_byte_stream),
'image/format': dataset_util.bytes_feature(image_format),
}))
boxes, class_ids, scores = tf_odapi_client(tf_example.SerializeToString(),
ip, port, model_name,
"serving_default",
input_name="serialized_example",
timeout=300
)
class_names = np.array([class_mapping_dict[class_id]
for class_id in class_ids])
return (class_ids, class_names, scores, boxes)
def _export_saved_model(export_dir, estimator, odapi_configs):
"""Private function which exports a SavedModel from estimator
Arguments:
export_dir (str): directory to export temp SavedModels for TF serving
estimator (tf.estimator.Estimator): detection model as tf estimator
odapi_configs (dict): Object detection api pipeline.config object
Returns:
None
"""
log("Exporting the model as SavedModel in {}".format(export_dir))
# Just a placeholder
pred_input_config = odapi_configs["eval_input_config"]
predict_input_fn = create_predict_input_fn(odapi_configs["model"],
pred_input_config)
estimator.export_saved_model(export_dir_base=export_dir,
serving_input_receiver_fn=predict_input_fn)
log("Exported SavedModel!")
def _write_tf_record(tasks, output_file, reverse_class_mapping_dict):
"""Private function which writes training TF-Record file
Arguments:
tasks (iterable): prodigy's tasks
output_file (str): output TF-Record filename
reverse_class_mapping_dict (dict): key as class name and value as int
Returns:
a counter containing number of examples returned
"""
writer = tf.python_io.TFRecordWriter(output_file)
counter = 0
for task in tasks:
if task['answer'] == 'accept':
tf_example = create_a_tf_example(task, reverse_class_mapping_dict)
writer.write(tf_example.SerializeToString())
counter += 1
else:
continue
writer.close()
log("Successfully written {} annotations as TFRecords".format(counter))
return counter
def _create_dir(path):
"""A private function which creates a directory if it does not exists
Arguments:
path (str): Directory path
Returns:
None
"""
if not os.path.isdir(path):
log("Creating a directory {}".format(path))
os.mkdir(path)
else:
log("Directory {} already exists".format(path))
def get_span(prediction, pil_image, hidden=True):
"""Function which returns a prodigy span
Arguments:
prediction (iterable): containing one class_id, name, prob, box
pil_image (pil.Image): A PIL image
hidden (bool)
Returns:
A span (dict) with following keys:
score, label, label_id, points, hidden
"""
class_id, name, prob, box = prediction
name = str(name, "utf8") if not isinstance(name, str) else name
image_width = pil_image.width
image_height = pil_image.height
ymin, xmin, ymax, xmax = box
# un-normalize the coordinates
xmin = xmin*image_width
xmax = xmax*image_width
ymin = ymin*image_height
ymax = ymax*image_height
box_width = abs(xmax - xmin)
box_height = abs(ymax - ymin)
rel_points = [
[xmin, ymin],
[xmin, ymin+box_height],
[xmin+box_width, ymin+box_height],
[xmin+box_width, ymin]
]
return {
"score": prob,
"label": name,
"label_id": int(class_id),
"points": rel_points,
"hidden": hidden,
}
def tf_odapi_client(data, ip, port, model_name,
signature_name, input_name, timeout=300):
"""Client for using Tensorflow Serving with Tensorflow Object Detection API
Arguments:
data (np.ndarray/bytes): A numpy array of data or bytes. No Default
ip (str): IP address of tensorflow serving. No Default
port (str/int): Port of tensorflow serving. No Default
model_name (str): Model name. No Default
signature_name (str): Signature name. No Default
input_name (str): Input tensor name. No Default
timeout (str): timeout for API call. Default 300 secs
returns:
a tuple containing numpy arrays of (boxes, classes, scores)
"""
result = generic_tf_serving_client(data, ip, port,
model_name, signature_name,
input_name, timeout
)
# boxes are ymin.xmin,ymax,xmax
boxes = np.array(result.outputs['detection_boxes'].float_val)
classes = np.array(result.outputs['detection_classes'].float_val)
scores = np.array(result.outputs['detection_scores'].float_val)
boxes = boxes.reshape((len(scores), 4))
classes = np.squeeze(classes.astype(np.int32))
scores = np.squeeze(scores)
return (boxes, classes, scores)
def generic_tf_serving_client(data, ip, port, model_name,
signature_name, input_name, timeout=300):
"""A generic tensorflow serving client that predicts using given data
Arguments:
data (np.ndarray/bytes): A numpy array of data or bytes. No Default
ip (str): IP address of tensorflow serving. No Default
port (str/int): Port of tensorflow serving. No Default
model_name (str): Model name. No Default
signature_name (str): Signature name. No Default
input_name (str): Input tensor name. No Default
timeout (str): timeout for API call. Default 300 secs
returns:
Prediction protobuf
"""
start_time = time()
assert isinstance(data, (np.ndarray, bytes)), \
"data must be a numpy array or bytes but got {}".format(type(data))
channel = grpc.insecure_channel('{}:{}'.format(ip, port))
stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
request = predict_pb2.PredictRequest()
request.model_spec.name = model_name
request.model_spec.signature_name = signature_name
request.inputs['{}'.format(input_name)
].CopyFrom(tf.contrib.util.make_tensor_proto(
data,
))
result = stub.Predict(request, timeout)
log(("time taken for prediction using model {} "
"version {} is: {} secs").format(
str(result.model_spec.name), result.model_spec.version.value,
time()-start_time))
return result
def create_a_tf_example(single_stream, reverse_class_mapping_dict):
"""Function to create a single training Tf.Example object
Arguments:
single_stream (dict): A single prodigy stream
reverse_class_mapping_dict (dict): key as class name and value as int
Returns:
A single training tf.Example compatible with object detection API
"""
image_byte_stream = b64_uri_to_bytes(single_stream["image"])
encoded_image_io = io.BytesIO(image_byte_stream)
image = Image.open(encoded_image_io)
width, height = image.size
filename = str(single_stream["meta"]["file"])
file_extension = filename.split(".")[1].lower()
if file_extension == "png":
image_format = b'png'
elif file_extension in ("jpg", "jpeg"):
image_format = b'jpg'
else:
log(("Only 'png', 'jpeg' or 'jpg' files are supported by ODAPI. "
"Got {}. Thus treating it as `jpg` file. "
"Might cause errors".format(file_extension)
))
image_format = b'jpg'
xmins = []
xmaxs = []
ymins = []
ymaxs = []
classes_text = []
classes = []
filename = filename.encode("utf-8")
for span in single_stream["spans"]:
points = np.array(span["points"])
xmin, ymin = np.amin(points, axis=0)
xmax, ymax = np.amax(points, axis=0)
# points need to be normalized
xmin = xmin/width
ymin = ymin/height
xmax = xmax/width
ymax = ymax/height
assert xmin < xmax
assert ymin < ymax
# Clip bounding boxes that go outside the image
if xmin < 0:
xmin = 0
if xmax > width:
xmax = width - 1
if ymin < 0:
ymin = 0
if ymax > height:
ymax = height - 1
xmins.append(xmin)
ymins.append(ymin)
xmaxs.append(xmax)
ymaxs.append(ymax)
classes_text.append(span["label"].encode("utf-8"))
classes.append(int(reverse_class_mapping_dict[span["label"]]))
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(image_byte_stream),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text':
dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
return tf_example
def _remove_garbage(folder, max_num_to_keep, garbage_type,
filter_string=None):
"""Private function which keeps only max_num_to_keep files/folders
in a given directory
Arguments:
folder (str): Folder to monitor
max_num_to_keep (int): maximum number of recent files/folders to keep
garbage_type (str): one of ('file' or 'folder').
filer (str): optional pattern to look for. Default None
Returns:
None
"""
contents = [os.path.join(folder, f) for f in os.listdir(folder)]
if garbage_type.lower() == "file":
contents = list(filter(lambda x: os.path.isfile(x), contents))
elif garbage_type.lower() == "folder":
contents = list(
filter(lambda x: os.path.isdir(x) and "temp" not in str(x),
contents))
else:
raise ValueError("garbage_type must be one of 'file', 'folder'")
if filter_string:
contents = list(filter(lambda x: filter_string in os.path.basename(x),
contents))
if len(contents) > max_num_to_keep:
recent_n_contents = sorted(contents)[::-1][:max_num_to_keep]
contents_to_delete = list(set(contents) - set(recent_n_contents))
for content_to_delete in contents_to_delete:
if garbage_type == "file":
os.remove(content_to_delete)
elif garbage_type == "folder":
shutil.rmtree(content_to_delete, ignore_errors=True)