forked from ScaramuzzinoGiovanna/Watermark-DnCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWatermarkedVisualizerModel.py
156 lines (122 loc) · 5.19 KB
/
WatermarkedVisualizerModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# -*- coding: utf-8 -*-
import cv2
import numpy as np
import DnCNNModel
import AuxVisualizerModel
import tensorflow as tf
import pylab
import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import
import utility
import os
np.random.seed(0)
def degradation(input, gt):
num = np.prod(gt.shape)
difference = np.sqrt(np.sum(np.square(input - gt))) / num
print('element degrade: ', difference)
return difference
def his2D(input, gt):
v1 = np.reshape(gt, np.prod(gt.shape))
(n, bins) = np.histogram(v1, bins=50, normed=True) # NumPy version (no plot)
pylab.plot(1.0 * (bins[1:]), n)
v2 = np.reshape(input, np.prod(input.shape))
(n, bins2) = np.histogram(v2, bins=50, normed=True) # NumPy version (no plot)
pylab.plot(1.0 * (bins2[1:]), n)
pylab.show()
def his3D(input, gt):
fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(1, 41, 1)
Y = np.arange(1, 41, 1)
X, Y = np.meshgrid(X, Y)
Z_gt = np.squeeze(gt)
Z_input = np.squeeze(input)
surf = ax.plot_surface(X, Y, Z_gt, cmap=cm.coolwarm)
fig.colorbar(surf, shrink=0.5, aspect=5)
surf_input = ax.plot_surface(X, Y, Z_input, cmap='rainbow')
fig.colorbar(surf_input, shrink=0.5, aspect=5)
plt.show()
def post_process(input):
input = np.squeeze(input, axis=0)
input = input * 255
input = np.clip(input, 0, 255)
input = input.astype(np.uint8)
input = np.squeeze(input, axis=2)
return input
def transition(w):
return w
class WatermarkedVisualizerModel(object):
'''
Easy to use class that builds a model (and the Auxiliary visualizer) based on given checkpoint and is ready to eval input images.
Given output have to be a watermark sign.
'''
def __init__(self):
self.loaded = False
self.session: tf.Session = None
self.img_clean = None
self.img_noise = None
self.Y, self.N = None, None
self.training_placeholder = None
self.ldr = None
self.dncnn_s_out = None
def build_model(self, model_path='./DnCNN_weight/', DnCNN_model_name='model_weight_45'):
DIP_model_path = './combine_weight/'
DIP_model_name = 'Black_DIP_sign_weight_8'
if self.loaded:
self.session.close()
del self.session
del self.training_placeholder
del self.img_noise, self.img_clean
del self.Y, self.N
del self.ldr, self.dncnn_s_out
# with tf.Graph().as_default():
self.img_clean = tf.placeholder(tf.float32, [None, None, None, 1], name='clean_image')
self.training_placeholder = tf.placeholder(tf.bool, name='is_training')
# DnCNN model
img_noise = self.img_clean + 0 * tf.random_normal(shape=tf.shape(self.img_clean),
stddev=25 / 255.0) # trigger img
self.Y, self.N = DnCNNModel.dncnn(img_noise, is_training=False)
# extract weight
self.dncnn_s_out = transition(self.N)
# DeepPrior model
self.ldr = AuxVisualizerModel.Encoder_decoder(self.dncnn_s_out, is_training=True)
dncnn_var_list = [v for v in tf.all_variables() if v.name.startswith('block')]
DnCNN_saver = tf.train.Saver(dncnn_var_list)
dip_var_list = [v for v in tf.all_variables() if v.name.startswith('DIP')]
DIP_saver = tf.train.Saver(dip_var_list)
self.session = tf.Session()
DnCNN_saver.restore(self.session, os.path.join(model_path, DnCNN_model_name + ".ckpt"))
DIP_saver.restore(self.session, os.path.join(DIP_model_path, DIP_model_name + ".ckpt"))
self.loaded = True
def eval(self, trigger_image='trigger_image.png', show_input=True):
if not self.loaded:
print("Model not loaded. load it to start")
return np.zeros((40, 40))
if type(trigger_image) is str:
ramd_Image = cv2.imread('key_imgs/' + trigger_image, 0)
else:
ramd_Image = trigger_image
ramd_Image = ramd_Image.astype(np.float32) / 255.0
ramd_Image = np.expand_dims(ramd_Image, 0)
ramd_Image = np.expand_dims(ramd_Image, 3)
# ramd_Images = np.load('./spec_input/spec_14065.npy')
# ramd_Image = ramd_Images[0,:, :, :]
# ramd_Image = np.expand_dims(ramd_Image, 0)
mid, out = self.session.run([self.dncnn_s_out, self.ldr],
feed_dict={self.img_clean: ramd_Image, self.training_placeholder: False})
# print(mid.shape)
mark_out = post_process(out)
return mark_out
if __name__ == '__main__':
out_copyrightImg_path = 'out_copyrightImg'
utility.create_folder(out_copyrightImg_path)
# comment here to change source model.'DnCNN_weight' is original model, 'overwrting' is WM trained model
# model_path = './DnCNN_weight/'
model_path = './overwriting/'
dip_model_path = './combine_weight/'
model = WatermarkedVisualizerModel()
model.build_model(model_path=model_path, DnCNN_model_name=utility.get_last_model(model_path))
img = model.eval()
cv2.imwrite(out_copyrightImg_path + '/copyrightImg.png', img)
utility.show_image(img, title='watermark')