forked from swiftbiosciences/16S-SNAPP-py3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblastn_for_templates.sh
executable file
·153 lines (133 loc) · 5.15 KB
/
blastn_for_templates.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#!/bin/bash
## Swift Biosciences 16S snapp workflow
## Author Benli Chai & Sukhinder Sandhu 20200502
#Run blastn three times with different DBs and queries to make increasingly
#more complete sets of matches between reads and reference
##Format a blastDB of asv for second blast in order to capture a more complete
#set of matches
echo -e "\nMaking ASV blast DB...\n Starts: $(date)">>$log
start=$(date +%s.%N)
$MAKEBLASTDB \
-dbtype nucl \
-in asv_uniq.fasta \
-out asv
echo " Ends: $(date)">>$log
end=$(date +%s.%N)
runtime=$(python -c "print(${end} - ${start})")
echo " Making ASV blastDB Runtime: $runtime sec" >> $log
##Blast the pre-formatted reference DB to find the hits above the cutoff
echo -e "\nRunning first blast...\n Starts: $(date)">>$log
start=$(date +%s.%N)
$BLASTN \
-num_threads 4 \
-db ${RDP_FULL_BLAST} \
-query asv_uniq.fasta \
-out blastn_1.txt \
-outfmt "6 std qlen slen" \
-perc_identity 97 \
-qcov_hsp_perc 97
echo " Ends: $(date)">>$log
end=$(date +%s.%N)
runtime=$(python -c "print(${end} - ${start})")
echo " First Runtime: $runtime sec" >> $log
#obtain top hits of each query sequence from all samples
echo -e "\nFiltering the first blast...\n Starts: $(date)">>$log
start=$(date +%s.%N)
cat blastn_1.txt \
| awk -F '\t' '{if($3 >= 99 && ($4/$13) > 0.99) print $2}' \
| sort -u \
> reflist.txt
template_count=$(< reflist.txt wc -l)
cut -f2 blastn_1.txt |sort -u > exp_reflist.txt
java -jar ${RDPHOME}/ReadSeq.jar \
select-seqs exp_reflist.txt \
exp_refset.fasta fasta Y ${RDP_FULL_SEQ}
java -jar ${RDPHOME}/ReadSeq.jar \
select-seqs reflist.txt \
refset.fasta fasta Y exp_refset.fasta
echo " Ends: $(date)">>$log
end=$(date +%s.%N)
runtime=$(python -c "print(${end} - ${start})")
echo -e "\nExtracting ${template_count} preliminary candidate template sequences\n Starts: $(date)">>$log
echo " Completed parsing first blast. Runtime: $runtime sec" >> $log
# Prepare SeqMatch DB
echo -e "\nFormatting SeqMatch DB ...\n Starts: $(date)">>$log
start=$(date +%s.%N)
[ -d seqmatch ] && echo "Directory seqmatch does exist, please delete..." && exit
mkdir seqmatch
java -jar ${RDPHOME}/SequenceMatch.jar train exp_refset.fasta seqmatch/train
echo " Ends: $(date)">>$log
end=$(date +%s.%N)
runtime=$(python -c "print(${end} - ${start})")
echo " Completed training SeqMatch. Runtime: $runtime sec" >> $log
# Run blast using preliminary candidate templetes against asv DB in order to obtain a
#more complete set of template-asv matches
echo -e "\nRunning second blast...\n Starts: $(date)">>$log
start=$(date +%s.%N)
$BLASTN \
-num_threads 4 \
-db asv \
-max_target_seqs 2000 \
-query refset.fasta \
-out blastn_2.txt \
-outfmt "6 std qlen slen" \
-perc_identity 99
echo " Ends: $(date)">>$log
end=$(date +%s.%N)
runtime=$(python -c "print(${end} - ${start})")
echo " Second blast Runtime: $runtime sec" >> $log
cat blastn_2.txt \
| awk -F '\t' '{if($3 >= 97 && ($4/$14) > 0.97) print $0}' \
> blastn_2_filtered.txt
echo -e "\nRunning dereplicating blast_2...\n Starts: $(date)">>$log
start=$(date +%s.%N)
${SCRIPTS}/derep_hitsets.py blastn_2_filtered.txt \
> blastn_2_derep_IDs.txt
echo " Ends: $(date)">>$log
end=$(date +%s.%N)
runtime=$(python -c "print(${end} - ${start})")
echo " Dereplicate Second blast Runtime: $runtime sec" >> $log
echo -e "\nRunning extracting dereplicated blastn_2...\n Starts: $(date)">>$log
start=$(date +%s.%N)
java -jar ${RDPHOME}/ReadSeq.jar \
select-seqs blastn_2_derep_IDs.txt \
blastn_2_derep.fasta fasta Y refset.fasta
echo " Ends: $(date)">>$log
end=$(date +%s.%N)
runtime=$(python -c "print(${end} - ${start})")
echo " Extracted dereplicated blast_2 hits Runtime: $runtime sec" >> $log
echo -e "\nRunning making blastDB with dereplicated blastn_2 hits ...\n Starts: $(date)">>$log
start=$(date +%s.%N)
$MAKEBLASTDB \
-dbtype nucl \
-in blastn_2_derep.fasta \
-out blastn_2_derep
echo " Ends: $(date)">>$log
end=$(date +%s.%N)
runtime=$(python -c "print(${end} - ${start})")
echo " Making blastDB with dereplicated blastn_2 hits Runtime: $runtime sec" >> $log
echo -e "\nRunning blastn with all asv seqs against dereplicated blastn_2 hits ...\n Starts: $(date)">>$log
start=$(date +%s.%N)
$BLASTN \
-num_threads 4 \
-db blastn_2_derep \
-max_target_seqs 2000 \
-query asv_uniq.fasta \
-out blastn_3.txt \
-outfmt "6 std qlen slen" \
-perc_identity 97 \
-qcov_hsp_perc 97
echo " Ends: $(date)">>$log
end=$(date +%s.%N)
runtime=$(python -c "print(${end} - ${start})")
echo " Done blastn with all asv seqs against dereplicated blastn_2 hits Runtime: $runtime sec" >> $log
cat blastn_3.txt \
| awk -F '\t' '{if($3 >= 97 && ($4/$13) > 0.97) print $0}' \
> blastn_3_filtered.txt
#yank blastn results and create pickle dictionary file for each of all samples
${SCRIPTS}/pickle_blastn_by_sample.py asv_count.csv blastn_3_filtered.txt asv.uc
#Split ASV file into multiple ones containing 500 sequences in each
mkdir asv_tmp
cat asv_PE.fasta | \
(cd asv_tmp; split -a 8 -l 1000)
#(cd asv_tmp; split -a 8 --additional-suffix=.fasta -l 1000)