forked from swiftbiosciences/16S-SNAPP-py3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconverge.py
executable file
·315 lines (266 loc) · 15 KB
/
converge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#!/usr/bin/env python
## Swift Biosciences 16S snapp workflow
## Author Benli Chai & Sukhinder Sandhu 20200502
#Take the blast results and coverge reads to their likely templates
## Ported to Python 3 on 20210108
import sys
import os
import pandas as pd
from blastn_parser import *
from utils import *
from minimize_var import *
from load_consensus import *
from lineage_parser import *
import concurrent.futures
import timeit
#Process each sample separately: each sample is represented by a read (row)-
#refence (column) count dataframe
def assign_read_counts(sampleID, readCounts, hits_info):
print ('Allocating multi-mapped read counts for sample', sampleID)
print ('Total mapped references:', len(hits_info))
refSet_start_time = timeit.default_timer()
##1. instantiate refseq objects to associate reads
refset, refseq_PE_list = initiate_refset(hits_info)
print ('Pre-reduction refset size:', len(refset))
print ('Number of matched PEs:', len(refseq_PE_list))
print (sampleID, 'refset total time', timeit.default_timer() - refSet_start_time)
##2. Converge the refset to a much smaller set containing the greatest gene
## coverage and account for reference-mapped read counts
refset = converge_ref(refset)
print ('Minimized refset size:', len(refset))
##3. make a DataFrame of ref-read and count
DF = get_ref_read_df(refset, readCounts).fillna(0)
##4. Sort row (reads) of DF by the nonzero read (max in this case) count of each rows
#DF = DF.ix[DF.max(axis=1).sort_values(ascending=True).index,:] #changed to next line for Python 3
DF = DF.loc[DF.max(axis=1).sort_values(ascending=True).index,:]
##5. Make a deep copy of this DF to hold assigned read counts for this sample
DF_assigned = DF.copy(deep=True)
print ('The sample ASV-reference dataframe', DF.shape)
##6. slice a subset (rows) where each read is mapped to more than one reference
readIDs_tbd = DF.loc[(DF.astype(bool).sum(axis=1) > 1) , :].index
##7. Set all multi-mapped ref-read count to small number 0.001 They will be filled later with
#the optimized values through minimization
DF_assigned.loc[(DF_assigned.astype(bool).sum(axis=1) > 1) , :] = 0.001
print ('There are:', len(readIDs_tbd), 'multi-mapped asv representatives')
##8. Iterate each multi-mapped read to optimize its count allocation to each
## mapped reference by minimizing the sum of variance across all references
## it is mapped to. It is the most time consuming step and has to be done
## sequencially
for readID in readIDs_tbd: #iterate over each multi-mapped read
df = DF.loc[:, (DF.loc[readID] > 0)] #dataframe slice containing all reference columns that have nonzero values with this read
df = df.loc[(df != 0).any(1), :] #drop read rows that contain all zeros
df_assigned = DF_assigned.loc[df.index, df.columns] #make a same slice the dataframe to hold normalized values
rIDs = df.index.to_list() #all readIDs in this matrix (index)
mask = [-1 for ID in rIDs]
mask[rIDs.index(readID)] = df.loc[readID, :][0]
# submit the dataframe and mask for allocating read counts by minimizing
# the sum of variance of read counts across all reference mapped to this read
df_assigned = minimize_var(df_assigned.T, mask)
# update read count to the assigned. Do we need this step? Should assignments to the setset of DF be inplace?
DF_assigned.update(df_assigned.T)
##9. Change post-minimization refset from a list to a dictionary keyed by their IDs
refset = {refset[i].ID:refset[i] for i in range(len(refset))}
##10. Fetch refseq strings
idList = os.path.join(WD, sampleID + '_idlist.txt')
out = open(idList, 'w')
out.write("\n".join(refset.keys()))
out.close()
seqFile = os.path.join(WD, sampleID + '_ref.fasta')
fetch_refseq(RDPHOME, idList, seqFile, ref_db_path)
refset = update_refseq(DF_assigned, seqFile, refset)
return refset, refseq_PE_list
## Obtain alignment length distributions: per refseq and normlized by readCounts
def get_len_stats(sample_id, refset):
length_per_refseq = []
length_norm_readcount = []
for refID in refset:
length = refset[refID].getAlignLen()
readCounts = int(refset[refID].getCountSum())
length_per_refseq.append(length)
length_norm_readcount.extend([length]*readCounts)
length1 = '\n ' + pd.Series(length_per_refseq).describe().to_string().replace('\n', '\n ')
length2 = '\n ' + pd.Series(length_norm_readcount).describe().to_string().replace('\n', '\n ')
with open(log, 'a') as logfile:
logfile.write('\n Alignment length stats per template in ' + sample_id )
logfile.write(length1 + '\n')
logfile.write('\n Alignment length stats per asv in ' + sample_id )
logfile.write(length2 + '\n')
return pd.Series(length_per_refseq).describe(), pd.Series(length_norm_readcount).describe()
##cluster consensus and asv sequences from all samples and make an abundance table with taxonomic assignments
def get_cluster_tbl(wd):
all_seqs = os.path.join(wd, 'consensus_asv.fasta')
os.system('cat %s/*_consensus.fasta > %s'%(wd, all_seqs))
uc = os.path.join(wd, 'all.uc')
reps = os.path.join(wd, 'reps.fasta')
cmd = 'vsearch --cluster_size %s --strand both \
--id 0.97 --uc %s --centroid %s'%(all_seqs, uc, reps)
os.system(cmd)
def combine_lineage_count(sample_id, refset, unmapped_list):
refseqs = refset.values()
Hash = {} #to hold the feature counts collapsed by lineage
feature_counts_dict = {} # the count series of associated and unassociated reads using the IDs of the templates or K1 nearest reference
feature_taxa_dict = {} # the taxonomic assignments of the features
feature_template_seqs_dict = {} # the template sequence strings
#first fetch lineage-count from refseq objects
#nameproxy = Name_proxy() #instantiate consensus naming object
for refseq in refseqs:
ID = refseq.ID
lineage = refseq.tax.strip()
count = refseq.getCountSum()
template_seq = refseq.seq
template_id = ID + ';sample_id=' + sample_id #use modified template ID to avoid redundancy with other samples
#template_id = nameproxy.get_assumed_id(ID) #use modified template ID to avoid redundancy with other samples
feature_counts_dict[template_id] = count
feature_taxa_dict[template_id] = lineage
feature_template_seqs_dict[template_id] = template_seq
if not lineage in Hash:
Hash[lineage] = count
else:
Hash[lineage] += count
#second fetch lineage-counts of unmapped asvs
for asvID in unmapped_list:
lineage = pe_lineage_dict[asvID].strip()
count = rDF.loc[asvID, sample_id]
try:
k1_ID = K1_dict[asvID]
except KeyError:
#this read will not be included in the final tables because it is
#beyond the seqmatch cutoff
continue
#Assign count and lineage of asvs to reference IDs
if not k1_ID in feature_counts_dict.keys():
feature_counts_dict[k1_ID] = count
feature_taxa_dict[k1_ID] = lineage
else:
if lineage.count(';') > feature_taxa_dict[k1_ID].count(','): #pick the better assignmentSample
feature_counts_dict[k1_ID] += count
feature_taxa_dict[k1_ID] = lineage #replace with this better asssignment
else:
feature_counts_dict[k1_ID] += count
if not lineage in Hash:
Hash[lineage] = count
else:
Hash[lineage] += count
return (Hash, feature_counts_dict, feature_taxa_dict, feature_template_seqs_dict)
def converge(sample_id): #converge each sample calculating all required attributes of the refset
sample_count = rDF.loc[:, sample_id] #asv count series of this sample
sample_count_series = sample_count[sample_count > 0]#drop 0's count series of this sample
sample_read_count = len(sample_count_series)
#load previously pickled blastn results as a dictionary for this sample
blastn_pickle = os.path.join(WD, 'pickle/' + sample_id + '.pkl')
blastn_match_dict = pd.read_pickle(blastn_pickle)
#call assign_read_counts function to converge the asv PEs
refset, mapped_ASV_IDs = assign_read_counts(sample_id, sample_count_series, blastn_match_dict)
unmapped_ASV_IDs = list(sample_count_series.index.drop(mapped_ASV_IDs))
mapped_ASV_count =len(mapped_ASV_IDs)
with open(log, 'a') as logfile:
logfile.write(' Count of total unique ASVs in ' + sample_id + ': ' + \
str(sample_read_count) + '\n')
logfile.write(' Count of mapped unique ASVs in ' + sample_id + ': ' + \
str(mapped_ASV_count) + '\n')
logfile.write(' Percentage of mapped unique ASVs in ' + sample_id + \
': ' + str(round(mapped_ASV_count/float(sample_read_count)*100, 2)) + '\n')
consensus_seqs = load_consensus(sample_id, refset, pe_seq_dict, WD)
seq_name = os.path.join(WD, sample_id + '_consensus.fasta')
with open(seq_name, 'w') as conseq: #write consensus seqs to a file
conseq.write(consensus_seqs)
classify_proxy(sample_id, RDPHOME, WD) #classify consensus sequences
refset = add_lineages(WD, sample_id, pe_lineage_dict, refset)#load the best assignment from asv_PEs and the proxies
#Append unmapped ASVs to the consensus sequence file with size information
with open(seq_name, 'a') as asv:
asv.write('\n')
for asv_id in unmapped_ASV_IDs:
size = rDF.loc[asv_id , sample_id]
asv.write('>' + asv_id + ';sample_id=' + sample_id + ';size=%s'%size + '\n' + pe_seq_dict[asv_id] + '\n')
get_len_stats(sample_id, refset) #alignment length distributions of mapped reads
collapsed_series, \
feat_count_series, \
feat_tax_series, \
feat_tempSeq_dict \
= combine_lineage_count(sample_id, refset, list(unmapped_ASV_IDs))#get abundance dictionary of all lineages in this sample
return (pd.DataFrame.from_dict({sample_id:collapsed_series}), \
pd.DataFrame.from_dict({sample_id:feat_count_series}), \
pd.DataFrame.from_dict({sample_id:feat_tax_series}), \
feat_tempSeq_dict)
##main##
if __name__ == '__main__':
if not len(sys.argv) == 5:
print ("coverge.py countTable.csv asv_PE.fasta asv_PE.cls log")
sys.exit()
start_time = timeit.default_timer()
#environmental variables
WD = os.environ['WD'] #work directory
RDPHOME = os.environ['RDPHOME']
RESDIR = os.environ['RESDIR']
readseqJar = os.path.join(RDPHOME, "ReadSeq.jar")
ref_db_path = os.path.join(WD, 'refset.fasta')
#Three arguments#
count_table = sys.argv[1] #countable using asv representative IDs
pe_seq_dict = read_seq(sys.argv[2]) #PE reads
read_cls = sys.argv[3] #assignment of asv PEs
log = sys.argv[4] #the name of the log file to append processing info
##load countTable
rDF = pd.read_csv(count_table, sep = ',', header=0, index_col = 0)
#Fetch tax assignments of all asv PEs prior to converging
pe_lineage_dict = get_lineages(read_cls, 0.7)
converge_start = timeit.default_timer()
#run parallel processing on seqmatch
seq_match_tmp = os.path.join(WD, 'asv_tmp')
K1_dict=run_seqmatch(seq_match_tmp, WD)
#Iterate over all samples to converge asv PEs; it's optional for parallel processing
#with multiple processors if the resources including memory are available
lineage_count_series_list = []
feature_count_series_list = []
taxonomy_series_list = []
template_mapped_seqs_dict = {} #template seqs for associated reads
###############################################################################################
#Process one sample at a time #
#for sample_id in rDF.columns: #
# collapsed, featCounts, featTax, templates_mapped_seqs_dict_sample = \ converge(sample_id)#
# lineage_count_series_list.append(collapsed) #
# feature_count_series_list.append(featCounts) #
# taxonomy_series_list.append(featTax) #
# template_mapped_seqs_dict.update(templates_mapped_seqs_dict_sample) #
###############################################################################################
###############################################################################
#Multi-processing by process pooling. Use caution when applying this option #
all_completed = [] #to collect abundance for each sample when it's completed #
with concurrent.futures.ProcessPoolExecutor(max_workers=4) as executor: #
results = [executor.submit(converge, sample) for sample in rDF.columns] #
for f in concurrent.futures.as_completed(results): #
all_completed.append(f.result()) #
for sample_rs in all_completed: #
lineage_count_series_list.append(sample_rs[0]) #
feature_count_series_list.append(sample_rs[1]) #
taxonomy_series_list.append(sample_rs[2]) #
template_mapped_seqs_dict.update(sample_rs[3]) #template seqs for assoc #
###############################################################################
# Render the abundance and taxonomy tables
lineage_abundance_table = pd.concat(lineage_count_series_list, join = 'outer',\
axis = 1, sort=False).fillna(0).round(2)
lineage_abundance_table.to_csv(os.path.join(RESDIR, 'lineage-table.tsv'), sep='\t')
feature_abundance_table = pd.concat(feature_count_series_list, join = 'outer', \
axis = 1, sort=False).fillna(0).round(2)
feature_abundance_table.to_csv(os.path.join(RESDIR,'feature-table.tsv'), sep='\t')
taxonomy_table = pd.concat(taxonomy_series_list, join = 'outer', axis = 1, sort=False)
taxonomy_table = taxonomy_table.fillna('-').max(axis=1, numeric_only=False)
taxonomy_table.index.name = 'feature'
taxonomy_table.to_csv(os.path.join(RESDIR, 'taxonomy-table.tsv'), sep='\t',\
header = ['lineage'])
# make the reference tree using the template sequences
templateIDs_all = taxonomy_table.index.to_list()
templateIDs_mapped = template_mapped_seqs_dict.keys()
templateIDs_unmapped = set(templateIDs_all).difference(set(templateIDs_mapped))
with open(os.path.join(WD, 'unmapped_templates.list'), 'w') as out:
out.write("\n".join(templateIDs_unmapped))
out.close()
seqid_filename = os.path.join(WD, 'unmapped_templates.list')
seq_filename = os.path.join(WD, 'templates.fasta')
fetch_refseq(RDPHOME, seqid_filename, seq_filename, ref_db_path)
#append template seqs of mapped reads
with open(os.path.join(WD, 'templates.fasta'), 'a') as out:
for ID in templateIDs_mapped:
out.write('>' + ID + '\n' + template_mapped_seqs_dict[ID] + '\n')
build_tree(seq_filename, WD, RESDIR)
elapsed = timeit.default_timer() - converge_start
print ('Total converge.py time: ', elapsed)