forked from swiftbiosciences/16S-SNAPP-py3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_OTU_table.py
executable file
·89 lines (77 loc) · 2.65 KB
/
get_OTU_table.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#!/usr/bin/env python
#
import sys
import os
import pandas as pd
import json
def get_idmap(f):#replace sequence ids with integers
Map = {}
counter = 0
for line in open(f, 'r').readlines():
if line[0] == '>':
ID = line.strip().replace('>', '')
counter += 1
newid = 'C' + (6-len(str(counter)))*'0' + str(counter)
Map[ID] = newid
return Map
if __name__ == "__main__":
if len(sys.argv) != 5:
print ("get_OTU_table.py wd all_cons.fasta all_cons.clr outname")
sys.exit()
wd = sys.argv[1] #work directory
fasta = sys.argv[2] #abundance sorted concensus fasta file
clr = sys.argv[3] #cluster file in RDPTools format
outname = sys.argv[4] #name prefix
RESDIR = os.environ['RESDIR']
outname = os.path.join(RESDIR, outname)
count_table = {}
idmap = get_idmap(fasta)
#save idmap into a json file in case needed in trouble shooting
with open("all_cons_idmap.json", "w") as outfile:
json.dump(idmap, outfile)
#open count old table dictionary
with open('all_counts.json') as json_file:
count_table = json.load(json_file)
#load taxonomy table dictionary
with open('all_assignments.json') as json_file:
tax_dict = json.load(json_file)
#convert the cluster file into the cluster dictionar
cluster_map = {}
for line in open('all_cons.clr', 'r').readlines():
mems = line.strip().split('\t')[1].split(',')
cluster_map[mems[0]] = mems
#convert consensus ids to their centroid id of their respective clusters
to_centroid = {}
for cluster in list(cluster_map.values()):
for ID in cluster:
to_centroid[ID] = cluster[0]
#make a new abundance table with simplified centroid ids
new_tax = {}
new_dict = {}
for sample_name in list(count_table.keys()):
new_dict[sample_name] = {}
IDs = list(count_table[sample_name].keys())
for ID in IDs:
count = int(count_table[sample_name][ID])
if ID.find('asv') == 0:#asv IDs strip sample and size info
cID = ID.split(';')[0]
tax = tax_dict[cID]
else:
try:
cID = to_centroid[ID]
except KeyError:
cID = ID
tax = tax_dict[cID]
cID = idmap[cID] #simplified ID
if not cID in new_dict[sample_name].keys():
new_dict[sample_name][cID] = count
else:
new_dict[sample_name][cID] += count
if not cID in new_tax.keys():
new_tax[cID] = tax
#output the abundance table in simplified IDs
df = pd.DataFrame(new_dict).fillna(0)
df.to_csv(outname + '_count.txt', sep = '\t')
tax_out = open(outname + '_taxonomy.txt', 'w')
for f, t in new_tax.items():
tax_out.write(f + '\t' + t + '\n')