|
| 1 | +#!/usr/bin/env python3 |
| 2 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 3 | +# |
| 4 | +# This source code is licensed under the MIT license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +from __future__ import annotations |
| 8 | + |
| 9 | +from collections import defaultdict |
| 10 | +from typing import DefaultDict, Dict, List, Optional |
| 11 | + |
| 12 | +import numpy as np |
| 13 | +from ax.core.arm import Arm |
| 14 | +from ax.core.observation import Observation, ObservationData, separate_observations |
| 15 | +from ax.core.search_space import SearchSpace |
| 16 | +from ax.modelbridge.base import ModelBridge |
| 17 | +from ax.modelbridge.transforms.base import Transform |
| 18 | +from ax.models.types import TConfig |
| 19 | + |
| 20 | + |
| 21 | +class MergeRepeatedMeasurements(Transform): |
| 22 | + """Merge repeated measurements for to obtain one observation per arm. |
| 23 | +
|
| 24 | + Repeated measurements are merged via inverse variance weighting (e.g. over |
| 25 | + different trials). This intentionally ignores the trial index and assumes |
| 26 | + stationarity. |
| 27 | +
|
| 28 | + TODO: Support inverse variance weighting correlated outcomes (full covariance). |
| 29 | +
|
| 30 | + Note: this is not reversible. |
| 31 | + """ |
| 32 | + |
| 33 | + def __init__( |
| 34 | + self, |
| 35 | + search_space: Optional[SearchSpace] = None, |
| 36 | + observations: Optional[List[Observation]] = None, |
| 37 | + modelbridge: Optional[ModelBridge] = None, |
| 38 | + config: Optional[TConfig] = None, |
| 39 | + ) -> None: |
| 40 | + if observations is None: |
| 41 | + raise RuntimeError("MergeRepeatedMeasurements requires observations") |
| 42 | + # create a mapping of arm_key -> {metric_name: {means: [], vars: []}} |
| 43 | + arm_to_multi_obs: DefaultDict[ |
| 44 | + str, DefaultDict[str, DefaultDict[str, List[float]]] |
| 45 | + ] = defaultdict(lambda: defaultdict(lambda: defaultdict(list))) |
| 46 | + observation_features, observation_data = separate_observations(observations) |
| 47 | + # |
| 48 | + for j, obsd in enumerate(observation_data): |
| 49 | + # This intentionally ignores the trial index |
| 50 | + key = Arm.md5hash(observation_features[j].parameters) |
| 51 | + # TODO: support inverse variance weighting for multivariate distributions |
| 52 | + # (full covariance) |
| 53 | + diag = np.diag(np.diag(obsd.covariance)) |
| 54 | + if np.any(np.isnan(obsd.covariance)): |
| 55 | + raise NotImplementedError("All metrics must have noise observations.") |
| 56 | + elif ~np.all(obsd.covariance == diag): |
| 57 | + raise NotImplementedError( |
| 58 | + "Only independent metrics are currently supported." |
| 59 | + ) |
| 60 | + for i, m in enumerate(obsd.metric_names): |
| 61 | + arm_to_multi_obs[key][m]["means"].append(obsd.means[i]) |
| 62 | + arm_to_multi_obs[key][m]["vars"].append(obsd.covariance[i, i]) |
| 63 | + |
| 64 | + self.arm_to_merged: DefaultDict[str, Dict[str, Dict[str, float]]] = defaultdict( |
| 65 | + dict |
| 66 | + ) |
| 67 | + for k, metric_dict in arm_to_multi_obs.items(): |
| 68 | + for m, v in metric_dict.items(): |
| 69 | + # inverse variance weighting |
| 70 | + var = np.array(v["vars"]) |
| 71 | + means = np.array(v["means"]) |
| 72 | + noiseless = var == 0 |
| 73 | + if np.any(noiseless): |
| 74 | + noiseless_means = means[noiseless] |
| 75 | + if (noiseless_means.shape[0] > 1) and ( |
| 76 | + not np.all(noiseless_means[1:] == noiseless_means[0]) |
| 77 | + ): |
| 78 | + raise ValueError( |
| 79 | + "All repeated arms with noiseless measurements " |
| 80 | + "must have the same means." |
| 81 | + ) |
| 82 | + self.arm_to_merged[k][m] = { |
| 83 | + "mean": noiseless_means[0], |
| 84 | + "var": 0.0, |
| 85 | + } |
| 86 | + else: |
| 87 | + inv_var = 1 / np.array(var) |
| 88 | + inv_sum_inv_var = 1 / np.sum(inv_var) |
| 89 | + weights = inv_var * inv_sum_inv_var |
| 90 | + self.arm_to_merged[k][m] = { |
| 91 | + "mean": np.sum(means * weights), |
| 92 | + "var": inv_sum_inv_var, |
| 93 | + } |
| 94 | + |
| 95 | + def transform_observations( |
| 96 | + self, |
| 97 | + observations: List[Observation], |
| 98 | + ) -> List[Observation]: |
| 99 | + # Transform observations |
| 100 | + new_observations = [] |
| 101 | + observation_features, observation_data = separate_observations(observations) |
| 102 | + for j, obsd in enumerate(observation_data): |
| 103 | + key = Arm.md5hash(observation_features[j].parameters) |
| 104 | + # pop to ensure that the resulting observations list has one |
| 105 | + # observation per unique arm |
| 106 | + metric_dict = self.arm_to_merged.pop(key, None) |
| 107 | + if metric_dict is None: |
| 108 | + continue |
| 109 | + merged_means = np.zeros(len(obsd.metric_names)) |
| 110 | + merged_covariance = np.zeros( |
| 111 | + (len(obsd.metric_names), len(obsd.metric_names)) |
| 112 | + ) |
| 113 | + for i, m in enumerate(obsd.metric_names): |
| 114 | + merged_metric = metric_dict[m] |
| 115 | + merged_means[i] = merged_metric["mean"] |
| 116 | + merged_covariance[i, i] = merged_metric["var"] |
| 117 | + new_obsd = ObservationData( |
| 118 | + metric_names=obsd.metric_names, |
| 119 | + means=merged_means, |
| 120 | + covariance=merged_covariance, |
| 121 | + ) |
| 122 | + new_obs = Observation(features=observation_features[j], data=new_obsd) |
| 123 | + new_observations.append(new_obs) |
| 124 | + return new_observations |
0 commit comments