Skip to content

Commit 085fda4

Browse files
Pyre Bot Jrfacebook-github-bot
authored andcommitted
suppress errors in vision/fair/detectron2/projects/DensePose
Differential Revision: D33202211 fbshipit-source-id: 10fb961968bd944783ec229941d412bbe7e4afa8
1 parent 1315c89 commit 085fda4

File tree

13 files changed

+35
-9
lines changed

13 files changed

+35
-9
lines changed

projects/DensePose/densepose/converters/chart_output_to_chart_result.py

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,9 @@ def resample_uv_tensors_to_bbox(
3636
x, y, w, h = box_xywh_abs
3737
w = max(int(w), 1)
3838
h = max(int(h), 1)
39+
# pyre-fixme[6]: Expected `Optional[int]` for 2nd param but got `Tuple[int, int]`.
3940
u_bbox = F.interpolate(u, (h, w), mode="bilinear", align_corners=False)
41+
# pyre-fixme[6]: Expected `Optional[int]` for 2nd param but got `Tuple[int, int]`.
4042
v_bbox = F.interpolate(v, (h, w), mode="bilinear", align_corners=False)
4143
uv = torch.zeros([2, h, w], dtype=torch.float32, device=u.device)
4244
for part_id in range(1, u_bbox.size(1)):
@@ -137,6 +139,8 @@ def resample_confidences_to_bbox(
137139
# assign data from channels that correspond to the labels
138140
for key in confidence_names:
139141
resampled_confidence = F.interpolate(
142+
# pyre-fixme[6]: Expected `Optional[int]` for 2nd param but got
143+
# `Tuple[int, int]`.
140144
getattr(predictor_output, key), (h, w), mode="bilinear", align_corners=False
141145
)
142146
result = confidence_base.clone()

projects/DensePose/densepose/converters/segm_to_mask.py

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -25,6 +25,8 @@ def resample_coarse_segm_tensor_to_bbox(coarse_segm: torch.Tensor, box_xywh_abs:
2525
x, y, w, h = box_xywh_abs
2626
w = max(int(w), 1)
2727
h = max(int(h), 1)
28+
# pyre-fixme[16]: `Tensor` has no attribute `argmax`.
29+
# pyre-fixme[6]: Expected `Optional[int]` for 2nd param but got `Tuple[int, int]`.
2830
labels = F.interpolate(coarse_segm, (h, w), mode="bilinear", align_corners=False).argmax(dim=1)
2931
return labels
3032

@@ -48,11 +50,16 @@ def resample_fine_and_coarse_segm_tensors_to_bbox(
4850
w = max(int(w), 1)
4951
h = max(int(h), 1)
5052
# coarse segmentation
53+
# pyre-fixme[16]: `Tensor` has no attribute `argmax`.
5154
coarse_segm_bbox = F.interpolate(
55+
# pyre-fixme[6]: Expected `Optional[int]` for 2nd param but got `Tuple[int,
56+
# int]`.
5257
coarse_segm, (h, w), mode="bilinear", align_corners=False
5358
).argmax(dim=1)
5459
# combined coarse and fine segmentation
5560
labels = (
61+
# pyre-fixme[6]: Expected `Optional[int]` for 2nd param but got `Tuple[int,
62+
# int]`.
5663
F.interpolate(fine_segm, (h, w), mode="bilinear", align_corners=False).argmax(dim=1)
5764
* (coarse_segm_bbox > 0).long()
5865
)

projects/DensePose/densepose/data/samplers/densepose_base.py

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -141,13 +141,18 @@ def _resample_mask(self, output: Any) -> torch.Tensor:
141141
"""
142142
sz = DensePoseDataRelative.MASK_SIZE
143143
S = (
144+
# pyre-fixme[16]: `Tensor` has no attribute `argmax`.
145+
# pyre-fixme[6]: Expected `Optional[int]` for 2nd param but got
146+
# `Tuple[int, int]`.
144147
F.interpolate(output.coarse_segm, (sz, sz), mode="bilinear", align_corners=False)
145148
.argmax(dim=1)
146149
.long()
147150
)
148151
I = (
149152
(
150153
F.interpolate(
154+
# pyre-fixme[6]: Expected `Optional[int]` for 2nd param but got
155+
# `Tuple[int, int]`.
151156
output.fine_segm, (sz, sz), mode="bilinear", align_corners=False
152157
).argmax(dim=1)
153158
* (S > 0).long()

projects/DensePose/densepose/data/samplers/densepose_cse_base.py

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -109,7 +109,11 @@ def _produce_mask_and_results(
109109
S = densepose_output.coarse_segm
110110
E = densepose_output.embedding
111111
_, _, w, h = bbox_xywh
112+
# pyre-fixme[6]: Expected `Optional[int]` for 2nd param but got `Tuple[int,
113+
# int]`.
112114
embeddings = F.interpolate(E, size=(h, w), mode="bilinear")[0]
115+
# pyre-fixme[6]: Expected `Optional[int]` for 2nd param but got `Tuple[int,
116+
# int]`.
113117
coarse_segm_resized = F.interpolate(S, size=(h, w), mode="bilinear")[0]
114118
mask = coarse_segm_resized.argmax(0) > 0
115119
other_values = torch.empty((0, h, w), device=E.device)
@@ -130,6 +134,9 @@ def _resample_mask(self, output: Any) -> torch.Tensor:
130134
"""
131135
sz = DensePoseDataRelative.MASK_SIZE
132136
mask = (
137+
# pyre-fixme[16]: `Tensor` has no attribute `argmax`.
138+
# pyre-fixme[6]: Expected `Optional[int]` for 2nd param but got
139+
# `Tuple[int, int]`.
133140
F.interpolate(output.coarse_segm, (sz, sz), mode="bilinear", align_corners=False)
134141
.argmax(dim=1)
135142
.long()

projects/DensePose/densepose/data/samplers/densepose_cse_confidence_based.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -112,6 +112,8 @@ def _produce_mask_and_results(
112112
densepose_output = instance.pred_densepose
113113
mask, embeddings, _ = super()._produce_mask_and_results(instance, bbox_xywh)
114114
other_values = F.interpolate(
115+
# pyre-fixme[6]: Expected `Optional[int]` for 2nd param but got
116+
# `Tuple[int, int]`.
115117
getattr(densepose_output, self.confidence_channel), size=(h, w), mode="bilinear"
116118
)[0].cpu()
117119
return mask, embeddings, other_values

projects/DensePose/densepose/data/transform/image.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -31,6 +31,8 @@ def __call__(self, images: torch.Tensor) -> torch.Tensor:
3131
max_size = max(images.shape[-2:])
3232
scale = min(self.min_size / min_size, self.max_size / max_size)
3333
images = torch.nn.functional.interpolate(
34+
# pyre-fixme[6]: Expected `Optional[typing.List[float]]` for 2nd param
35+
# but got `float`.
3436
images, scale_factor=scale, mode="bilinear", align_corners=False
3537
)
3638
return images

projects/DensePose/densepose/engine/trainer.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -77,7 +77,6 @@ def extract_embedder_from_model(cls, model: nn.Module) -> Optional[Embedder]:
7777
if isinstance(model, nn.parallel.DistributedDataParallel):
7878
model = model.module
7979
if hasattr(model, "roi_heads") and hasattr(model.roi_heads, "embedder"):
80-
# pyre-fixme[16]: `Tensor` has no attribute `embedder`.
8180
return model.roi_heads.embedder
8281
return None
8382

projects/DensePose/densepose/evaluation/densepose_coco_evaluation.py

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -543,7 +543,10 @@ def _extract_mask(self, dt: Dict[str, Any]) -> np.ndarray:
543543
dy = max(int(dt["bbox"][3]), 1)
544544
dx = max(int(dt["bbox"][2]), 1)
545545
return (
546+
# pyre-fixme[16]: `Tensor` has no attribute `argmax`.
546547
F.interpolate(
548+
# pyre-fixme[6]: Expected `Optional[int]` for 2nd param but got
549+
# `Tuple[int, int]`.
547550
dt["coarse_segm"].unsqueeze(0), (dy, dx), mode="bilinear", align_corners=False
548551
)
549552
.squeeze(0)
@@ -561,6 +564,8 @@ def _extract_mask(self, dt: Dict[str, Any]) -> np.ndarray:
561564
dx = max(int(dt["bbox"][2]), 1)
562565
return (
563566
F.interpolate(
567+
# pyre-fixme[6]: Expected `Optional[int]` for 2nd param but got
568+
# `Tuple[int, int]`.
564569
coarse_segm.unsqueeze(0), (dy, dx), mode="bilinear", align_corners=False
565570
)
566571
.squeeze(0)

projects/DensePose/densepose/modeling/cse/embedder.py

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -58,7 +58,6 @@ def create_embedder(embedder_spec: CfgNode, embedder_dim: int) -> nn.Module:
5858
raise ValueError(f"Unexpected embedder type {embedder_type}")
5959

6060
if not embedder_spec.IS_TRAINABLE:
61-
# pyre-fixme[29]: `Union[nn.Module, torch.Tensor]` is not a function.
6261
embedder.requires_grad_(False)
6362

6463
return embedder
@@ -86,7 +85,6 @@ def __init__(self, cfg: CfgNode):
8685
logger = logging.getLogger(__name__)
8786
for mesh_name, embedder_spec in cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBEDDERS.items():
8887
logger.info(f"Adding embedder embedder_{mesh_name} with spec {embedder_spec}")
89-
# pyre-fixme[29]: `Union[nn.Module, torch.Tensor]` is not a function.
9088
self.add_module(f"embedder_{mesh_name}", create_embedder(embedder_spec, embedder_dim))
9189
self.mesh_names.add(mesh_name)
9290
if cfg.MODEL.WEIGHTS != "":

projects/DensePose/densepose/modeling/cse/utils.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -63,7 +63,9 @@ def get_closest_vertices_mask_from_ES(
6363
Closest Vertices (tensor [h, w]), int, for every point of the resulting box
6464
Segmentation mask (tensor [h, w]), boolean, for every point of the resulting box
6565
"""
66+
# pyre-fixme[6]: Expected `Optional[int]` for 2nd param but got `Tuple[int, int]`.
6667
embedding_resized = F.interpolate(E, size=(h, w), mode="bilinear")[0].to(device)
68+
# pyre-fixme[6]: Expected `Optional[int]` for 2nd param but got `Tuple[int, int]`.
6769
coarse_segm_resized = F.interpolate(S, size=(h, w), mode="bilinear")[0].to(device)
6870
mask = coarse_segm_resized.argmax(0) > 0
6971
closest_vertices = torch.zeros(mask.shape, dtype=torch.long, device=device)

0 commit comments

Comments
 (0)