Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Some model parameters or buffers are not found in the checkpoint #5412

Open
iholy19 opened this issue Dec 20, 2024 · 1 comment
Open

Some model parameters or buffers are not found in the checkpoint #5412

iholy19 opened this issue Dec 20, 2024 · 1 comment

Comments

@iholy19
Copy link

iholy19 commented Dec 20, 2024

Issue

When I try to load the model, it says that

Some model parameters or buffers are not found in the checkpoint:
backbone.fpn_lateral2.{bias, weight}
backbone.fpn_lateral3.{bias, weight}
.
.
.
roi_heads.mask_head.mask_fcn4.{bias, weight}
roi_heads.mask_head.predictor.{bias, weight}
The checkpoint state_dict contains keys that are not used by the model:
  fc1000.{bias, weight}
  stem.conv1.bias

Instructions To Reproduce the Issue:

Installation

I created conda env with torch v1.10.0 and CUDA 11.3
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge

I installed detectronv0.6 from the instruction here
python -m pip install detectron2 -f \ https://dl.fbaipublicfiles.com/detectron2/wheels/cu113/torch1.10/index.html

Code for training

Dataset and config

This part works fine

TRAIN_IMAGES = "../../train/images"
TRAIN_JSON = "../../train/annotations/train.json"
VAL_IMAGES = "../../val/images"
VAL_JSON = "../../val/annotations/val.json"

register_coco_instances("train", {}, TRAIN_JSON, TRAIN_IMAGES)
register_coco_instances("val", {}, VAL_JSON, VAL_IMAGES)

cfg = get_cfg()
cfg.merge_from_file(r"detectron2/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml")
cfg.DATASETS.TRAIN = ("train",)
cfg.DATASETS.TEST = ("val",)
cfg.OUTPUT_DIR = "./output1"
os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)

Training

trainer = DefaultTrainer(cfg)
trainer.resume_or_load(resume=False)

The above part throws warning like this

Some model parameters or buffers are not found in the checkpoint:
backbone.fpn_lateral2.{bias, weight}
backbone.fpn_lateral3.{bias, weight}
backbone.fpn_lateral4.{bias, weight}
backbone.fpn_lateral5.{bias, weight}
backbone.fpn_output2.{bias, weight}
backbone.fpn_output3.{bias, weight}
backbone.fpn_output4.{bias, weight}
backbone.fpn_output5.{bias, weight}
proposal_generator.rpn_head.anchor_deltas.{bias, weight}
proposal_generator.rpn_head.conv.{bias, weight}
proposal_generator.rpn_head.objectness_logits.{bias, weight}
roi_heads.box_head.fc1.{bias, weight}
roi_heads.box_head.fc2.{bias, weight}
roi_heads.box_predictor.bbox_pred.{bias, weight}
roi_heads.box_predictor.cls_score.{bias, weight}
roi_heads.mask_head.deconv.{bias, weight}
roi_heads.mask_head.mask_fcn1.{bias, weight}
roi_heads.mask_head.mask_fcn2.{bias, weight}
roi_heads.mask_head.mask_fcn3.{bias, weight}
roi_heads.mask_head.mask_fcn4.{bias, weight}
roi_heads.mask_head.predictor.{bias, weight}
The checkpoint state_dict contains keys that are not used by the model:
  fc1000.{bias, weight}
  stem.conv1.bias

Full log

True
[12/20 11:21:47 d2.engine.defaults]: Model:
GeneralizedRCNN(
  (backbone): FPN(
    (fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
    (fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
    (fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
    (fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
    (fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (top_block): LastLevelMaxPool()
    (bottom_up): ResNet(
      (stem): BasicStem(
        (conv1): Conv2d(
          3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
          (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
        )
      )
      (res2): Sequential(
        (0): BottleneckBlock(
          (shortcut): Conv2d(
            64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv1): Conv2d(
            64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
          )
          (conv2): Conv2d(
            64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
          )
          (conv3): Conv2d(
            64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
        )
        (1): BottleneckBlock(
          (conv1): Conv2d(
            256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
          )
          (conv2): Conv2d(
            64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
          )
          (conv3): Conv2d(
            64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
        )
        (2): BottleneckBlock(
          (conv1): Conv2d(
            256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
          )
          (conv2): Conv2d(
            64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
          )
          (conv3): Conv2d(
            64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
        )
      )
      (res3): Sequential(
        (0): BottleneckBlock(
          (shortcut): Conv2d(
            256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
          (conv1): Conv2d(
            256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv2): Conv2d(
            128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv3): Conv2d(
            128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
        )
        (1): BottleneckBlock(
          (conv1): Conv2d(
            512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv2): Conv2d(
            128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv3): Conv2d(
            128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
        )
        (2): BottleneckBlock(
          (conv1): Conv2d(
            512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv2): Conv2d(
            128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv3): Conv2d(
            128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
        )
        (3): BottleneckBlock(
          (conv1): Conv2d(
            512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv2): Conv2d(
            128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
          )
          (conv3): Conv2d(
            128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
        )
      )
      (res4): Sequential(
        (0): BottleneckBlock(
          (shortcut): Conv2d(
            512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
          (conv1): Conv2d(
            512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2): Conv2d(
            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (1): BottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2): Conv2d(
            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (2): BottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2): Conv2d(
            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (3): BottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2): Conv2d(
            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (4): BottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2): Conv2d(
            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
        (5): BottleneckBlock(
          (conv1): Conv2d(
            1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv2): Conv2d(
            256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
          )
          (conv3): Conv2d(
            256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
          )
        )
      )
      (res5): Sequential(
        (0): BottleneckBlock(
          (shortcut): Conv2d(
            1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False
            (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
          )
          (conv1): Conv2d(
            1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
          (conv2): Conv2d(
            512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
          (conv3): Conv2d(
            512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
          )
        )
        (1): BottleneckBlock(
          (conv1): Conv2d(
            2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
          (conv2): Conv2d(
            512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
          (conv3): Conv2d(
            512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
          )
        )
        (2): BottleneckBlock(
          (conv1): Conv2d(
            2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
          (conv2): Conv2d(
            512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
          )
          (conv3): Conv2d(
            512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
            (norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
          )
        )
      )
    )
  )
  (proposal_generator): RPN(
    (rpn_head): StandardRPNHead(
      (conv): Conv2d(
        256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
        (activation): ReLU()
      )
      (objectness_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1))
      (anchor_deltas): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1))
    )
    (anchor_generator): DefaultAnchorGenerator(
      (cell_anchors): BufferList()
    )
  )
  (roi_heads): StandardROIHeads(
    (box_pooler): ROIPooler(
      (level_poolers): ModuleList(
        (0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=0, aligned=True)
        (1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=0, aligned=True)
        (2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
        (3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
      )
    )
    (box_head): FastRCNNConvFCHead(
      (flatten): Flatten(start_dim=1, end_dim=-1)
      (fc1): Linear(in_features=12544, out_features=1024, bias=True)
      (fc_relu1): ReLU()
      (fc2): Linear(in_features=1024, out_features=1024, bias=True)
      (fc_relu2): ReLU()
    )
    (box_predictor): FastRCNNOutputLayers(
      (cls_score): Linear(in_features=1024, out_features=42, bias=True)
      (bbox_pred): Linear(in_features=1024, out_features=164, bias=True)
    )
    (mask_pooler): ROIPooler(
      (level_poolers): ModuleList(
        (0): ROIAlign(output_size=(14, 14), spatial_scale=0.25, sampling_ratio=0, aligned=True)
        (1): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=0, aligned=True)
        (2): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
        (3): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
      )
    )
    (mask_head): MaskRCNNConvUpsampleHead(
      (mask_fcn1): Conv2d(
        256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
        (activation): ReLU()
      )
      (mask_fcn2): Conv2d(
        256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
        (activation): ReLU()
      )
      (mask_fcn3): Conv2d(
        256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
        (activation): ReLU()
      )
      (mask_fcn4): Conv2d(
        256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
        (activation): ReLU()
      )
      (deconv): ConvTranspose2d(256, 256, kernel_size=(2, 2), stride=(2, 2))
      (deconv_relu): ReLU()
      (predictor): Conv2d(256, 41, kernel_size=(1, 1), stride=(1, 1))
    )
  )
)
[12/20 11:21:47 d2.data.datasets.coco]: Loaded 906 images in COCO format from ../../rcshv1.1/train/annotations/train.json
[12/20 11:21:47 d2.data.build]: Removed 0 images with no usable annotations. 906 images left.
[12/20 11:21:47 d2.data.build]: Distribution of instances among all 41 categories:
|   category    | #instances   |   category    | #instances   |   category    | #instances   |
|:-------------:|:-------------|:-------------:|:-------------|:-------------:|:-------------|
|  ligne_mixte  | 117          | dents_de_re.. | 37           | cedez_passage | 26           |
| passage_pie.. | 443          |     zebra     | 61           |    zigzag     | 108          |
| fleche_droit  | 160          | fleche_droi.. | 62           | fleche_droi.. | 36           |
| fleche_droite | 21           | fleche_raba.. | 0            | fleche_raba.. | 7            |
|    damier     | 29           |  ligne_feux   | 210          | ligne_sens_.. | 87           |
|    panneau    | 69           |    pic_pmr    | 45           |   pic_velo    | 620          |
|   txt_autre   | 36           |    txt_bus    | 32           |   txt_ecole   | 11           |
| txt_livraison | 51           |  txt_payant   | 186          | fleche_gauche | 93           |
|  ligne_stop   | 21           |   txt_velo    | 5            |  ligne_autre  | 151          |
|   sas_velo    | 0            | piste_cycla.. | 0            | ligne_conti.. | 244          |
| ligne_conti.. | 106          | ligne_disco.. | 3072         |   limite_30   | 61           |
|   limite_50   | 0            | pic_voiture.. | 18           | txt_name_of.. | 0            |
|  txt_zone_30  | 19           | velo_chevron  | 147          |     autre     | 172          |
| fleche_autre  | 0            | limite_stat.. | 2207         |               |              |
|     total     | 8770         |               |              |               |              |
[12/20 11:21:47 d2.data.dataset_mapper]: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip()]
[12/20 11:21:47 d2.data.build]: Using training sampler TrainingSampler
[12/20 11:21:47 d2.data.common]: Serializing 906 elements to byte tensors and concatenating them all ...
[12/20 11:21:47 d2.data.common]: Serialized dataset takes 1.71 MiB
[12/20 11:21:47 d2.checkpoint.c2_model_loading]: Renaming Caffe2 weights ......
[12/20 11:21:47 d2.checkpoint.c2_model_loading]: Following weights matched with submodule backbone.bottom_up:
| Names in Model    | Names in Checkpoint      | Shapes                                          |
|:------------------|:-------------------------|:------------------------------------------------|
| res2.0.conv1.*    | res2_0_branch2a_{bn_*,w} | (64,) (64,) (64,) (64,) (64,64,1,1)             |
| res2.0.conv2.*    | res2_0_branch2b_{bn_*,w} | (64,) (64,) (64,) (64,) (64,64,3,3)             |
| res2.0.conv3.*    | res2_0_branch2c_{bn_*,w} | (256,) (256,) (256,) (256,) (256,64,1,1)        |
| res2.0.shortcut.* | res2_0_branch1_{bn_*,w}  | (256,) (256,) (256,) (256,) (256,64,1,1)        |
| res2.1.conv1.*    | res2_1_branch2a_{bn_*,w} | (64,) (64,) (64,) (64,) (64,256,1,1)            |
| res2.1.conv2.*    | res2_1_branch2b_{bn_*,w} | (64,) (64,) (64,) (64,) (64,64,3,3)             |
| res2.1.conv3.*    | res2_1_branch2c_{bn_*,w} | (256,) (256,) (256,) (256,) (256,64,1,1)        |
| res2.2.conv1.*    | res2_2_branch2a_{bn_*,w} | (64,) (64,) (64,) (64,) (64,256,1,1)            |
| res2.2.conv2.*    | res2_2_branch2b_{bn_*,w} | (64,) (64,) (64,) (64,) (64,64,3,3)             |
| res2.2.conv3.*    | res2_2_branch2c_{bn_*,w} | (256,) (256,) (256,) (256,) (256,64,1,1)        |
| res3.0.conv1.*    | res3_0_branch2a_{bn_*,w} | (128,) (128,) (128,) (128,) (128,256,1,1)       |
| res3.0.conv2.*    | res3_0_branch2b_{bn_*,w} | (128,) (128,) (128,) (128,) (128,128,3,3)       |
| res3.0.conv3.*    | res3_0_branch2c_{bn_*,w} | (512,) (512,) (512,) (512,) (512,128,1,1)       |
| res3.0.shortcut.* | res3_0_branch1_{bn_*,w}  | (512,) (512,) (512,) (512,) (512,256,1,1)       |
| res3.1.conv1.*    | res3_1_branch2a_{bn_*,w} | (128,) (128,) (128,) (128,) (128,512,1,1)       |
| res3.1.conv2.*    | res3_1_branch2b_{bn_*,w} | (128,) (128,) (128,) (128,) (128,128,3,3)       |
| res3.1.conv3.*    | res3_1_branch2c_{bn_*,w} | (512,) (512,) (512,) (512,) (512,128,1,1)       |
| res3.2.conv1.*    | res3_2_branch2a_{bn_*,w} | (128,) (128,) (128,) (128,) (128,512,1,1)       |
| res3.2.conv2.*    | res3_2_branch2b_{bn_*,w} | (128,) (128,) (128,) (128,) (128,128,3,3)       |
| res3.2.conv3.*    | res3_2_branch2c_{bn_*,w} | (512,) (512,) (512,) (512,) (512,128,1,1)       |
| res3.3.conv1.*    | res3_3_branch2a_{bn_*,w} | (128,) (128,) (128,) (128,) (128,512,1,1)       |
| res3.3.conv2.*    | res3_3_branch2b_{bn_*,w} | (128,) (128,) (128,) (128,) (128,128,3,3)       |
| res3.3.conv3.*    | res3_3_branch2c_{bn_*,w} | (512,) (512,) (512,) (512,) (512,128,1,1)       |
| res4.0.conv1.*    | res4_0_branch2a_{bn_*,w} | (256,) (256,) (256,) (256,) (256,512,1,1)       |
| res4.0.conv2.*    | res4_0_branch2b_{bn_*,w} | (256,) (256,) (256,) (256,) (256,256,3,3)       |
| res4.0.conv3.*    | res4_0_branch2c_{bn_*,w} | (1024,) (1024,) (1024,) (1024,) (1024,256,1,1)  |
| res4.0.shortcut.* | res4_0_branch1_{bn_*,w}  | (1024,) (1024,) (1024,) (1024,) (1024,512,1,1)  |
| res4.1.conv1.*    | res4_1_branch2a_{bn_*,w} | (256,) (256,) (256,) (256,) (256,1024,1,1)      |
| res4.1.conv2.*    | res4_1_branch2b_{bn_*,w} | (256,) (256,) (256,) (256,) (256,256,3,3)       |
| res4.1.conv3.*    | res4_1_branch2c_{bn_*,w} | (1024,) (1024,) (1024,) (1024,) (1024,256,1,1)  |
| res4.2.conv1.*    | res4_2_branch2a_{bn_*,w} | (256,) (256,) (256,) (256,) (256,1024,1,1)      |
| res4.2.conv2.*    | res4_2_branch2b_{bn_*,w} | (256,) (256,) (256,) (256,) (256,256,3,3)       |
| res4.2.conv3.*    | res4_2_branch2c_{bn_*,w} | (1024,) (1024,) (1024,) (1024,) (1024,256,1,1)  |
| res4.3.conv1.*    | res4_3_branch2a_{bn_*,w} | (256,) (256,) (256,) (256,) (256,1024,1,1)      |
| res4.3.conv2.*    | res4_3_branch2b_{bn_*,w} | (256,) (256,) (256,) (256,) (256,256,3,3)       |
| res4.3.conv3.*    | res4_3_branch2c_{bn_*,w} | (1024,) (1024,) (1024,) (1024,) (1024,256,1,1)  |
| res4.4.conv1.*    | res4_4_branch2a_{bn_*,w} | (256,) (256,) (256,) (256,) (256,1024,1,1)      |
| res4.4.conv2.*    | res4_4_branch2b_{bn_*,w} | (256,) (256,) (256,) (256,) (256,256,3,3)       |
| res4.4.conv3.*    | res4_4_branch2c_{bn_*,w} | (1024,) (1024,) (1024,) (1024,) (1024,256,1,1)  |
| res4.5.conv1.*    | res4_5_branch2a_{bn_*,w} | (256,) (256,) (256,) (256,) (256,1024,1,1)      |
| res4.5.conv2.*    | res4_5_branch2b_{bn_*,w} | (256,) (256,) (256,) (256,) (256,256,3,3)       |
| res4.5.conv3.*    | res4_5_branch2c_{bn_*,w} | (1024,) (1024,) (1024,) (1024,) (1024,256,1,1)  |
| res5.0.conv1.*    | res5_0_branch2a_{bn_*,w} | (512,) (512,) (512,) (512,) (512,1024,1,1)      |
| res5.0.conv2.*    | res5_0_branch2b_{bn_*,w} | (512,) (512,) (512,) (512,) (512,512,3,3)       |
| res5.0.conv3.*    | res5_0_branch2c_{bn_*,w} | (2048,) (2048,) (2048,) (2048,) (2048,512,1,1)  |
| res5.0.shortcut.* | res5_0_branch1_{bn_*,w}  | (2048,) (2048,) (2048,) (2048,) (2048,1024,1,1) |
| res5.1.conv1.*    | res5_1_branch2a_{bn_*,w} | (512,) (512,) (512,) (512,) (512,2048,1,1)      |
| res5.1.conv2.*    | res5_1_branch2b_{bn_*,w} | (512,) (512,) (512,) (512,) (512,512,3,3)       |
| res5.1.conv3.*    | res5_1_branch2c_{bn_*,w} | (2048,) (2048,) (2048,) (2048,) (2048,512,1,1)  |
| res5.2.conv1.*    | res5_2_branch2a_{bn_*,w} | (512,) (512,) (512,) (512,) (512,2048,1,1)      |
| res5.2.conv2.*    | res5_2_branch2b_{bn_*,w} | (512,) (512,) (512,) (512,) (512,512,3,3)       |
| res5.2.conv3.*    | res5_2_branch2c_{bn_*,w} | (2048,) (2048,) (2048,) (2048,) (2048,512,1,1)  |
| stem.conv1.norm.* | res_conv1_bn_*           | (64,) (64,) (64,) (64,)                         |
| stem.conv1.weight | conv1_w                  | (64, 3, 7, 7)                                   |
Some model parameters or buffers are not found in the checkpoint:
backbone.fpn_lateral2.{bias, weight}
backbone.fpn_lateral3.{bias, weight}
backbone.fpn_lateral4.{bias, weight}
backbone.fpn_lateral5.{bias, weight}
backbone.fpn_output2.{bias, weight}
backbone.fpn_output3.{bias, weight}
backbone.fpn_output4.{bias, weight}
backbone.fpn_output5.{bias, weight}
proposal_generator.rpn_head.anchor_deltas.{bias, weight}
proposal_generator.rpn_head.conv.{bias, weight}
proposal_generator.rpn_head.objectness_logits.{bias, weight}
roi_heads.box_head.fc1.{bias, weight}
roi_heads.box_head.fc2.{bias, weight}
roi_heads.box_predictor.bbox_pred.{bias, weight}
roi_heads.box_predictor.cls_score.{bias, weight}
roi_heads.mask_head.deconv.{bias, weight}
roi_heads.mask_head.mask_fcn1.{bias, weight}
roi_heads.mask_head.mask_fcn2.{bias, weight}
roi_heads.mask_head.mask_fcn3.{bias, weight}
roi_heads.mask_head.mask_fcn4.{bias, weight}
roi_heads.mask_head.predictor.{bias, weight}
The checkpoint state_dict contains keys that are not used by the model:
  fc1000.{bias, weight}
  stem.conv1.bias

Your Environment

absl-py==2.1.0
antlr4-python3-runtime==4.9.3
appdirs==1.4.4
asttokens @ file:///home/conda/feedstock_root/build_artifacts/asttokens_1733175639022/work
attrs==24.3.0
backcall @ file:///home/conda/feedstock_root/build_artifacts/backcall_1592338393461/work
beautifulsoup4==4.12.3
black==21.4b2
bleach==6.1.0
cachetools==5.5.0
certifi==2024.12.14
charset-normalizer==3.4.0
click==8.1.7
cloudpickle==3.1.0
comm @ file:///home/conda/feedstock_root/build_artifacts/comm_1710320294760/work
contourpy==1.1.1
cycler==0.12.1
debugpy @ file:///home/conda/feedstock_root/build_artifacts/debugpy_1722923746907/work
decorator @ file:///home/conda/feedstock_root/build_artifacts/decorator_1641555617451/work
defusedxml==0.7.1
detectron2==0.6+cu113
docopt==0.6.2
executing @ file:///home/conda/feedstock_root/build_artifacts/executing_1725214404607/work
fastjsonschema==2.21.1
fonttools==4.55.3
future==1.0.0
fvcore==0.1.5.post20221221
google-auth==2.37.0
google-auth-oauthlib==1.0.0
grpcio==1.68.1
hydra-core==1.3.2
idna==3.10
importlib_metadata @ file:///home/conda/feedstock_root/build_artifacts/importlib-metadata_1726082825846/work
importlib_resources==6.4.5
iopath==0.1.9
ipykernel @ file:///home/conda/feedstock_root/build_artifacts/ipykernel_1719845459717/work
ipython==8.12.3
jedi @ file:///home/conda/feedstock_root/build_artifacts/jedi_1696326070614/work
Jinja2==3.1.4
jsonschema==4.23.0
jsonschema-specifications==2023.12.1
jupyter_client @ file:///home/conda/feedstock_root/build_artifacts/jupyter_client_1726610684920/work
jupyter_core @ file:///home/conda/feedstock_root/build_artifacts/jupyter_core_1727163409502/work
jupyterlab_pygments==0.3.0
kiwisolver==1.4.7
Markdown==3.7
MarkupSafe==2.1.5
matplotlib==3.7.5
matplotlib-inline @ file:///home/conda/feedstock_root/build_artifacts/matplotlib-inline_1713250518406/work
mistune==3.0.2
mypy-extensions==1.0.0
nbclient==0.10.1
nbconvert==7.16.4
nbformat==5.10.4
nest_asyncio @ file:///home/conda/feedstock_root/build_artifacts/nest-asyncio_1705850609492/work
numpy==1.23.1
oauthlib==3.2.2
omegaconf==2.3.0
opencv-python==4.10.0.84
packaging @ file:///home/conda/feedstock_root/build_artifacts/packaging_1733203243479/work
pandocfilters==1.5.1
parso @ file:///home/conda/feedstock_root/build_artifacts/parso_1712320355065/work
pathspec==0.12.1
pexpect @ file:///home/conda/feedstock_root/build_artifacts/pexpect_1706113125309/work
pickleshare @ file:///home/conda/feedstock_root/build_artifacts/pickleshare_1602536217715/work
Pillow @ file:///home/conda/feedstock_root/build_artifacts/pillow_1675487152289/work
pipreqs==0.5.0
pkgutil_resolve_name==1.3.10
platformdirs @ file:///home/conda/feedstock_root/build_artifacts/platformdirs_1726613481435/work
portalocker==3.0.0
prompt_toolkit @ file:///home/conda/feedstock_root/build_artifacts/prompt-toolkit_1727341649933/work
protobuf==5.29.2
psutil @ file:///home/conda/feedstock_root/build_artifacts/psutil_1719274595110/work
ptyprocess @ file:///home/conda/feedstock_root/build_artifacts/ptyprocess_1609419310487/work/dist/ptyprocess-0.7.0-py2.py3-none-any.whl
pure_eval @ file:///home/conda/feedstock_root/build_artifacts/pure_eval_1721585709575/work
pyasn1==0.6.1
pyasn1_modules==0.4.1
pycocotools==2.0.7
pydot==3.0.3
Pygments @ file:///home/conda/feedstock_root/build_artifacts/pygments_1714846767233/work
pyparsing==3.1.4
python-dateutil @ file:///home/conda/feedstock_root/build_artifacts/python-dateutil_1709299778482/work
PyYAML==6.0.2
pyzmq @ file:///home/conda/feedstock_root/build_artifacts/pyzmq_1724399083222/work
referencing==0.35.1
regex==2024.11.6
requests==2.32.3
requests-oauthlib==2.0.0
rpds-py==0.20.1
rsa==4.9
six @ file:///home/conda/feedstock_root/build_artifacts/six_1620240208055/work
soupsieve==2.6
stack-data @ file:///home/conda/feedstock_root/build_artifacts/stack_data_1669632077133/work
tabulate==0.9.0
tensorboard==2.14.0
tensorboard-data-server==0.7.2
termcolor==2.4.0
tinycss2==1.4.0
toml==0.10.2
torch==1.10.0
torchaudio==0.10.0
torchvision==0.11.0
tornado @ file:///home/conda/feedstock_root/build_artifacts/tornado_1717722826518/work
tqdm==4.67.1
traitlets @ file:///home/conda/feedstock_root/build_artifacts/traitlets_1713535121073/work
typing_extensions @ file:///home/conda/feedstock_root/build_artifacts/typing_extensions_1717802530399/work
urllib3==2.2.3
wcwidth @ file:///home/conda/feedstock_root/build_artifacts/wcwidth_1704731205417/work
webencodings==0.5.1
Werkzeug==3.0.6
yacs==0.1.8
yarg==0.1.9
zipp==3.20.2

@github-actions github-actions bot added the needs-more-info More info is needed to complete the issue label Dec 20, 2024
Copy link

You've chosen to report an unexpected problem or bug. Unless you already know the root cause of it, please include details about it by filling the issue template.
The following information is missing: "Your Environment";

@github-actions github-actions bot removed the needs-more-info More info is needed to complete the issue label Dec 20, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant