forked from RichardErkhov/FastFaceSwap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
1054 lines (950 loc) · 53.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import time
import argparse
import os
import globalsz
mode = 2 # 1 for side-by-side, 2 for stacked
background_color = "#222831"
button_color = "#0E8388"
text_color = "#EEEEEE"
tick_color = "#222831"
tick_background_color = "#EEEEEE"
border_color = "#444A53"
parser = argparse.ArgumentParser()
parser.add_argument('-f', '--face', help='use this face', dest='face', default="face.jpg")
parser.add_argument('-t', '--target', help='replace this face. If camera, use integer like 0',default="0", dest='target_path')
parser.add_argument('-o', '--output', help='path to output of the video',default="video.mp4", dest='output')
parser.add_argument('-cam-fix', '--camera-fix', help='fix for logitech cameras that start for 40 seconds in default mode.', dest='camera_fix', action='store_true')
parser.add_argument('-res', '--resolution', help='camera resolution, given in format WxH (ex 1920x1080). Is set for camera mode only',default="1920x1080", dest='resolution')
parser.add_argument('--threads', help='amount of gpu threads',default="4", dest='threads')
parser.add_argument('--image', help='Include if the target is image', dest='image', action='store_true')
parser.add_argument('--cli', help='run in cli mode, turns off preview and now accepts switch of face enhancer from the command', dest='cli', action='store_true')
parser.add_argument('--face-enhancer', help='face enhancer, choice works only in cli mode. In gui mode, you need to choose from gui', dest='face_enhancer', default='none', choices=['none','gfpgan', 'ffe', 'codeformer', 'gpfgan_onnx', 'real_esrgan'])
parser.add_argument('--no-face-swapper', '--no-swapper', help='disables face swapper', dest='no_faceswap', action='store_true')
#parser.add_argument('--preview-mode', help='experimental: preview mode', dest='preview', action='store_true')
parser.add_argument('--experimental', help='experimental mode, enables features like buffered video reader', dest='experimental', action='store_true')
parser.add_argument('--nocuda','--no-cuda', help='no cuda should be used', dest='nocuda', action='store_true')
parser.add_argument('--low-memory', '--lowmem', help='low memory usage attempt', dest='lowmem', action='store_true')
parser.add_argument('--batch', help='batch processing mode, after the argument write which suffix should the output files have', dest='batch', default='')
#parser.add_argument('--extract-target-frames', help='extract frames from target video. After argument write the path to folder', dest='extract_target', default="")
parser.add_argument('--extract-output-frames', help='extract frames from output video. After argument write the path to folder', dest='extract_output', default="")
parser.add_argument('--codeformer-fidelity', help='sets up codeformer\'s fidelity if used with cli mode',default=0.1, dest='codeformer_fidelity')
parser.add_argument('--blend', help='works with cli, blending amount from 0.0 to 1.0', default=1.0, dest='alpha')
parser.add_argument('--codeformer-skip_if_no_face', help='works only in cli. Skip codeformer if no face found', dest='codeformer_skip_if_no_face', action='store_true')
parser.add_argument('--codeformer-face-upscale', help='works only in cli. Upscale the face using codeformer', dest='codeformer_face_upscale', action='store_true')
parser.add_argument('--codeformer-background-enhance', help='works only in cli. Enhance the background using codeformer', dest='codeformer_background_enhance', action='store_true')
parser.add_argument('--codeformer-upscale', help='works with cli, the amount of upscale to apply to the frame using codeformer', default=1, dest='codeformer_upscale')
parser.add_argument('--select-face', help='change the face you want, not all faces. After the argument add the path to the image with face from the video', dest='selective', default='')
parser.add_argument('--optimization', help='choose the mode of the model: fp32 (default), fp16 (smaller, might be faster), int8 (doesnt work properly on old gpus, I dont know about new once, please test. On old gpus it uses cpu)', dest='optimization', default='fp32', choices=['fp32','fp16', 'int8'])
parser.add_argument('--fast-load', help='try to load as fast as possible, may be delays in the work, shouldnt affect the speed of processing', dest='fastload', action='store_true')
parser.add_argument("--bbox-adjust", help='adjustements to do for the box: x1,y1 coords of left top corner and x2,y2 are bottom right. Give in the form x1xy1xx2xy2 (default: 50x50x50x50)', default='50x50x50x50',dest='bbox_adjust')
parser.add_argument("-vcam", "--virtual-camera", help='allows to use OBS virtual camera as output source', action='store_true', dest="vcam")
parser.add_argument("--apple", help='just in case you are an apple user, you can finally use FFS', action='store_true', dest="apple")
args = {}
for name, value in vars(parser.parse_args()).items():
args[name] = value
width, height = args['resolution'].split('x')
globalsz.width, globalsz.height = int(width), int(height)
if args['batch'] != "" and not args['batch'].endswith(".mp4"):
args['batch'] += '.mp4'
#if args['extract_target'] != '':
# os.makedirs(args['extract_target'])
if args['extract_output'] != '':
os.makedirs(args['extract_output'])
if args['vcam']:
try:
import pyvirtualcam
except:
print("pip install pyvirtualcam to support output to OBS virtual camera")
exit()
alpha = float(args['alpha'])
frame = None #so tkinter doesn't die
original_frame = None
swapped_frame = None
#if args['cli']:
#testx = input("Are you sure you want to extract frames from videos? It will be done in the background (yes for yes and anything else for no):")
#if testx == 'yes':
#if args['batch'] == ''
#just a fix, sometimes speeds up things
os.environ['OMP_NUM_THREADS'] = '1'
globalsz.args = args
#from types import NoneType
NoneType = type(None)
import threading, os, time
if not args['fastload']:
from plugins.codeformer_app_cv2 import inference_app as codeformer
globalsz.lowmem = args['lowmem']
from utils import *
class simulate:
def __init__(self, bbox, kps, det_score, embedding, normed_embedding):
self.bbox = bbox
self.kps = kps
self.det_score = det_score
self.embedding=embedding
self.normed_embedding = normed_embedding
def kill_ui():
global root
root.destroy()
def get_source_face():
if isinstance(globalsz.source_face, NoneType):
try:
globalsz.source_face = sorted(face_analysers[0].get(cv2.imread(args['face'])), key=lambda x: x.bbox[0])[0]
except Exception as e:
print(f"HUSTON, WE HAVE A PROBLEM. WE CAN'T DETECT THE FACE IN THE IMAGE YOU PROVIDED! ERROR: {e}")
if not args['cli']:
show_error_custom(text = f"HUSTON, WE HAVE A PROBLEM. WE CAN'T DETECT THE FACE IN THE IMAGE YOU PROVIDED! ERROR: {e}")
kill_ui()
return globalsz.source_face
def start_swapper(sw):
import pickle
with open('ll.pkl', 'rb') as file:
loaded_data = pickle.load(file)
frame = face_swappers[sw].get(cv2.imread(args['face']), loaded_data, loaded_data, paste_back=True)
return frame
def start_analyser(sw):
x = sorted(face_analysers[sw].get(cv2.imread(args['face'])), key=lambda x: x.bbox[0])[0]
return x
def startx():
global face_swappers, face_analysers
face_swappers, face_analysers = prepare_swappers_and_analysers(args)
if not args['cli']:
threads = []
#threads_2 = []
for i in range(len(face_swappers)):
t = threading.Thread(target=start_swapper, args=[i,])
t.start()
threads.append(t)
#for i in range(len(face_swappers)):
t = threading.Thread(target=start_analyser, args=[i,])
t.start()
threads.append(t)
#for i in threads:
# i.join()
return threads
if args['fastload'] and args['cli']:
tx = threading.Thread(target=startx)
tx.start()
elif args['fastload'] and not args['cli']:
tx = startx()
# tx, tx2 = startx()
from tqdm import tqdm
from PIL import Image
if not args['cli']:
from PIL import ImageTk
if not args['lowmem']:
if not args['fastload']:
import tensorflow as tf
prepare()
def select_face():
global args, select_face_label
filex = askopenfilename(title="Select a face")
if filex:
args['face'] = filex
select_face_label.config(text=f'Face filename: {args["face"]}')
def select_target():
global args, select_target_label
if args['batch'] == "":
filex = askopenfilename(title="Select a target")
else:
filex = askdirectory(initialdir="target")
if filex:
args['target_path'] = filex
select_target_label.config(text=f'Target filename: {args["target_path"]}')
def select_camera():
global args, select_target_label
args["target_path"] = "0"
select_target_label.config(text=f'Target filename: {args["target_path"]}')
def select_output():
global args, select_output_label
if args['batch'] == "":
filename, ext = 'output.mp4', '.mp4'
if args['image']:
filename, ext = 'output.png', '.png'
filex = asksaveasfilename(initialfile=filename, defaultextension=ext, filetypes=[("All Files","*.*"),("Videos","*.mp4")])
else:
filex = askdirectory(initialdir="output")
if filex:
args['output'] = filex
select_output_label.config(text=f'Output filename: {args["output"]}')
if not args['fastload']:
if not globalsz.args['nocuda'] and not args['apple']:
device = torch.device(0)
gpu_memory_total = round(torch.cuda.get_device_properties(device).total_memory / 1024**3,2) # Convert bytes to GB
def on_closing():
print("thank you for using FFS")
print("If you didn't, please join our discord. Thank you")
os._exit(0)
while True:
if not args['cli']:
import tkinter as tk
from tkinter import ttk
from tkinter.filedialog import asksaveasfilename, askdirectory, askopenfilename
def finish(menu):
global thread_amount_temp
thread_amount_temp = thread_amount_input.get()
menu.destroy()
menu = tk.Tk()
menu.geometry("500x500")
menu.configure(bg=background_color)
menu.protocol("WM_DELETE_WINDOW", on_closing)
button_start_program = tk.Button(menu, text="Start Program",bg=button_color, fg=text_color, command=lambda: finish(menu))
button_start_program.pack()
select_face_label = tk.Label(menu,text=f'Face filename: {args["face"]}', fg=text_color, bg=background_color)
select_face_label.pack()
button_select_face = tk.Button(menu, text='Select face',bg=button_color, fg=text_color, command=select_face)
button_select_face.pack()
select_target_label = tk.Label(menu,text=f'Target filename: {args["target_path"]}', fg=text_color, bg=background_color)
select_target_label.pack()
button_select_target = tk.Button(menu, text='Select target',bg=button_color, fg=text_color, command=select_target)
button_select_target.pack()
button_select_camera = tk.Button(menu, text='run from camera',bg=button_color, fg=text_color, command=select_camera)
button_select_camera.pack()
select_output_label = tk.Label(menu, text=f'output filename: {args["output"]}', fg=text_color, bg=background_color)
select_output_label.pack()
button_select_output = tk.Button(menu, text='Select output',bg=button_color, fg=text_color, command=select_output)
button_select_output.pack()
thread_amount_label = tk.Label(menu, text='Select the number of threads', fg=text_color, bg=background_color)
thread_amount_label.pack()
thread_amount_input = tk.Entry(menu)
thread_amount_input.pack()
menu.mainloop()
if thread_amount_temp != "":
args['threads'] = int(thread_amount_temp)
if not isinstance(args['target_path'], int):
if (args['target_path'].isdigit()):
args['target_path'] = int(args['target_path'])
adjust_x1, adjust_y1, adjust_x2, adjust_y2 = args['bbox_adjust'].split('x')
adjust_x1, adjust_y1, adjust_x2, adjust_y2 = int(adjust_x1), int(adjust_y1), int(adjust_x2), int(adjust_y2)
'''adjust_x1 = 50
adjust_y1 = 50
adjust_x2 = 50
adjust_y2 = 50'''
def set_adjust_value():
global adjust_x1, adjust_y1, adjust_x2, adjust_y2
try:
adjust_x1 = int(entry_x1.get())
adjust_y1 = int(entry_y1.get())
adjust_x2 = int(entry_x2.get())
adjust_y2 = int(entry_y2.get())
except:
print("YOU HAVE TO PUT INTEGERS")
entry_x1.delete(0, tk.END)
entry_x2.delete(0, tk.END)
entry_y1.delete(0, tk.END)
entry_y2.delete(0, tk.END)
entry_x1.insert(0, adjust_x1)
entry_y1.insert(0, adjust_y1)
entry_x2.insert(0, adjust_x2)
entry_y2.insert(0, adjust_y2)
frame_index = 0
frame_move = 0
if not args['cli']:
root = tk.Tk()
style = ttk.Style()
# Set the theme to "clam"
style.theme_use("clam")
# Configure the Checkbutton style
style.configure("TCheckbutton",
indicatorbackground=tick_background_color,
indicatorforeground=tick_color,
background=background_color,
foreground=text_color)
# Ensure the Checkbutton doesn't change appearance when active
style.map("TCheckbutton",
indicatorbackground=[("active", tick_background_color)],
indicatorforeground=[("active", tick_color)],
background=[("active", background_color)],
foreground=[("active", text_color)])
#if not args['preview']:
# root.geometry("1000x750")
#else:
root.geometry("1000x970")
root.configure(bg=background_color)
left_frame = tk.Frame(root, bg=background_color)
left_frame.grid(row=0, column=0, rowspan=2, sticky="ns")
faceswapper_checkbox_var = tk.IntVar(value=1)
faceswapper_checkbox = ttk.Checkbutton(left_frame, text="Face swapper", variable=faceswapper_checkbox_var, style="TCheckbutton")
faceswapper_checkbox.grid(row=0, column=0)
checkbox_var = tk.IntVar()
checkbox = ttk.Checkbutton(left_frame, text="Face enhancer", variable=checkbox_var, style="TCheckbutton")
checkbox.grid(row=1, column=0)
enhancer_choice = tk.StringVar(value='fastface enhancer')
choices = ['fastface enhancer', 'gfpgan', 'codeformer', 'gfpgan onnx', "real esrgan"]
if args['lowmem']:
choices.remove('fastface enhancer')
dropdown = ttk.OptionMenu(left_frame, enhancer_choice, enhancer_choice.get(), *choices)
dropdown.grid(row=2, column=0)
show_bbox_var = tk.IntVar()
show_bbox = ttk.Checkbutton(left_frame, text="draw bounding box around faces", variable=show_bbox_var, style="TCheckbutton")
show_bbox.grid(row=3, column=0)
label = tk.Label(left_frame, text="bounding box adjustment", fg=text_color, bg=background_color)
label.grid(row=4, column=0)
label = tk.Label(left_frame, text="up", fg=text_color, bg=background_color)
label.grid(row=5, column=0)
entry_y1 = tk.Entry(left_frame)
entry_y1.grid(row=6, column=0)
entry_y1.insert(0, adjust_y1)
label = tk.Label(left_frame, text="right", fg=text_color, bg=background_color)
label.grid(row=7, column=0)
entry_x2 = tk.Entry(left_frame)
entry_x2.grid(row=8, column=0)
entry_x2.insert(0, adjust_x2)
label = tk.Label(left_frame, text="left", fg=text_color, bg=background_color)
label.grid(row=9, column=0)
entry_x1 = tk.Entry(left_frame)
entry_x1.grid(row=10, column=0)
entry_x1.insert(0, adjust_x1)
label = tk.Label(left_frame, text="down", fg=text_color, bg=background_color)
label.grid(row=11, column=0)
entry_y2 = tk.Entry(left_frame)
entry_y2.grid(row=12, column=0)
entry_y2.insert(0, adjust_y2)
button = tk.Button(left_frame, text="Set Values", bg=button_color, fg=text_color, command=set_adjust_value)
button.grid(row=13, column=0)
label = tk.Label(left_frame, text="for these settings you need codeformer to be enabled", fg=text_color, bg=background_color)
label.grid(row=14, column=0)
label = tk.Label(left_frame, text="and tick on the face enhancer", fg=text_color, bg=background_color)
label.grid(row=15, column=0)
codeformer_fidelity = 0.1
def on_codeformer_slider_move(value):
global codeformer_fidelity
codeformer_fidelity = float(value)
label = tk.Label(left_frame, text="Codeformer fidelity", fg=text_color, bg=background_color)
label.grid(row=16, column=0)
codeformer_slider = tk.Scale(left_frame, from_=0.1, to=2.0, resolution=0.1, orient=tk.HORIZONTAL, fg=text_color, bg=background_color, command=on_codeformer_slider_move)
codeformer_slider.grid(row=17, column=0)
alpha = 0.0
def alpha_slider_move(value):
global alpha
alpha = float(value)
label = tk.Label(left_frame, text="blender", fg=text_color, bg=background_color)
label.grid(row=18, column=0)
alpha_slider = tk.Scale(left_frame, from_=0.0, to=1.0, resolution=0.1, fg=text_color, bg=background_color, orient=tk.HORIZONTAL, command=alpha_slider_move)
alpha_slider.grid(row=19, column=0)
alpha_slider.set(1.0)
codeformer_skip_if_no_face_var = tk.IntVar()
codeformer_skip_if_no_face = ttk.Checkbutton(left_frame, text="Skip codeformer if not face is found", variable=codeformer_skip_if_no_face_var, style="TCheckbutton")
codeformer_skip_if_no_face.grid(row=20, column=0)
codeformer_upscale_face_var = tk.IntVar()
codeformer_upscale_face = ttk.Checkbutton(left_frame, text="Upscale face using codeformer", variable=codeformer_upscale_face_var, style="TCheckbutton")
codeformer_upscale_face.grid(row=21, column=0)
codeformer_upscale_face_var.set(1)
codeformer_enhance_background_var = tk.IntVar()
codeformer_enhance_background = ttk.Checkbutton(left_frame, text="Enhance background using codeformer", variable=codeformer_enhance_background_var, style="TCheckbutton")
codeformer_enhance_background.grid(row=22, column=0)
codeformer_upscale_amount_value = 1
def codeformer_upscale_amount_move(value):
global codeformer_upscale_amount_value
codeformer_upscale_amount_value = int(value)
codeformer_upscale_amount = tk.Scale(left_frame, from_=1, to=3, resolution=1, fg=text_color, bg=background_color, orient=tk.HORIZONTAL, command=codeformer_upscale_amount_move)
codeformer_upscale_amount.grid(row=23, column=0)
codeformer_upscale_amount.set(1)
label = tk.Label(left_frame, text="codeformer settings finished", fg=text_color, bg=background_color)
label.grid(row=24, column=0)
if not isinstance(args['target_path'], int):
progress_label = tk.Label(left_frame, fg=text_color, bg=background_color)
progress_label.grid(row=25, column=0)
usage_label1 = tk.Label(left_frame, fg=text_color, bg=background_color)
usage_label1.grid(row=26, column=0)
if not args['nocuda'] and not args['apple']:
usage_label2 = tk.Label(left_frame, fg=text_color, bg=background_color)
usage_label2.grid(row=27, column=0)
#if args['preview']:
def on_slider_move(value):
global frame_index
frame_index = int(value)
def edit_index(amount):
global frame_index
frame_index += amount
slider.set(frame_index)
def edit_play(amount):
global frame_move
frame_move = amount
#slider.set(frame_move)
frame_amount = count_frames(args['target_path'])
label = tk.Label(left_frame, text="frame number", fg=text_color, bg=background_color)
label.grid(row=28, column=0)
slider = tk.Scale(left_frame, from_=1, to=frame_amount, fg=text_color, bg=background_color, orient=tk.HORIZONTAL, command=on_slider_move)
slider.grid(row=29, column=0, sticky="ew")
frame_count_label = tk.Label(left_frame, text=f"total frames: {frame_amount}", fg=text_color, bg=background_color)
frame_count_label.grid(row=30, column=0, sticky="ew")
button_width = left_frame.winfo_width() // 2
label = tk.Label(left_frame, text = "frame back, frame forward, backplay, pause, play", fg=text_color, bg=background_color)
label.grid(row=31, column=0, sticky="ew")
button_frame = tk.Frame(left_frame, bg=background_color)
button_frame.grid(row=32, column=0, pady=10, sticky="ew")
frame_back_button = tk.Button(button_frame, text='<', bg=button_color, fg=text_color, width=button_width, command=lambda: edit_index(-1), anchor="center")
frame_back_button.pack(side=tk.LEFT, fill=tk.X, expand=True)
frame_back_button = tk.Button(button_frame, text='◀', bg=button_color, fg=text_color, width=button_width, command=lambda: edit_play(-1), anchor="center")
frame_back_button.pack(side=tk.LEFT, fill=tk.X, expand=True)
frame_back_button = tk.Button(button_frame, text='⏸', bg=button_color, fg=text_color, width=button_width, command=lambda: edit_play(0), anchor="center")
frame_back_button.pack(side=tk.LEFT, fill=tk.X, expand=True)
frame_back_button = tk.Button(button_frame, text='▶', bg=button_color, fg=text_color, width=button_width, command=lambda: edit_play(1), anchor="center")
frame_back_button.pack(side=tk.LEFT, fill=tk.X, expand=True)
frame_forward_button = tk.Button(button_frame, text='>', bg=button_color, fg=text_color, width=button_width, command=lambda: edit_index(1), anchor="center")
frame_forward_button.pack(side=tk.LEFT, fill=tk.X, expand=True)
def run_it_please():
global runnable, frame_index, count
runnable = 0
frame_index = 0
count = -1
render_button.config(state=tk.DISABLED)
cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
show_external_swapped_preview_var = tk.IntVar()
show_external_swapped_preview = ttk.Checkbutton(left_frame, text="Show swapped face in another window", variable=show_external_swapped_preview_var, style="TCheckbutton")
show_external_swapped_preview.grid(row=33, column=0)
show_external_swapped_preview_var.set(0)
render_button = tk.Button(left_frame, text='render', bg=button_color, fg=text_color, command=run_it_please)
render_button.grid(row=34, column=0)
face_selector_var = tk.IntVar()
face_selector_check = ttk.Checkbutton(left_frame, text="Face selector mode", variable=face_selector_var, style="TCheckbutton")
face_selector_check.grid(row=35, column=0)
face_selector_var.set(0)
def unselect_face():
global target_embedding, old_index, args
args['selective'] = ''
target_embedding = None
old_index = -1
unselect_face_button = tk.Button(left_frame, text='unselect the face button', bg=button_color, fg=text_color, command=unselect_face)
unselect_face_button.grid(row=36, column=0)
right_frame1 = tk.Frame(root, bg=background_color, highlightthickness=2, highlightbackground=border_color)
right_frame2 = tk.Frame(root, bg=background_color, highlightthickness=2, highlightbackground=border_color)
original_image_label = tk.Label(right_frame1, text="Image 1 Placeholder")
swapped_image_label = tk.Label(right_frame2, text="Image 2 Placeholder")
if mode == 1:
# Side by side configuration
right_frame1.grid(row=0, column=1, sticky="nsew")
original_image_label.pack(padx=15, pady=15)
right_frame2.grid(row=0, column=2, sticky="nsew")
swapped_image_label.pack(padx=15, pady=15)
# Configure column weights
root.grid_columnconfigure(0, weight=1)
root.grid_columnconfigure(1, weight=4)
root.grid_columnconfigure(2, weight=4)
root.grid_columnconfigure(3, weight=1)
root.grid_rowconfigure(0, weight=1)
else:
# Stacked configuration
right_frame1.grid(row=0, column=1, columnspan=2, sticky="nsew")
original_image_label.grid(sticky="nsew", padx=15, pady=15)
right_frame2.grid(row=1, column=1, columnspan=2, sticky="nsew")
swapped_image_label.grid(sticky="nsew", padx=15, pady=15)
# Configure column and row weights
root.grid_columnconfigure(0, weight=1)
root.grid_columnconfigure(1, weight=4)
root.grid_columnconfigure(2, weight=4)
root.grid_columnconfigure(3, weight=1)
root.grid_rowconfigure(0, weight=1)
root.grid_rowconfigure(1, weight=1)
def on_image_click(event):
global target_embedding, old_index, args
if face_selector_var.get() == 1:
image = original_image_label.image
image_width = image.width()
image_height = image.height()
relative_x = event.x / image_width
relative_y = event.y / image_height
print(relative_x, relative_y)
bboxes = []
faces = face_analysers[0].get(original_frame)
for face in faces:
bboxes.append(face.bbox)
height, width = original_frame.shape[:2]
real_x = height*relative_y
real_y = width*relative_x
for bbox in bboxes:
if real_y > bbox[0] and real_y < bbox[2] and real_x > bbox[1] and real_x < bbox[3]:
old_index = -1
this_face = original_frame[int(bbox[1]):int(bbox[3]), int(bbox[0]):int(bbox[2])]
args['selective'] = True
target_embedding = get_embedding(this_face)[0]
cv2.imshow("cropped face", this_face)
cv2.waitKey(0)
try:
cv2.destroyWindow("cropped face")
except:
break
break
original_image_label.bind("<Button-1>", on_image_click)
#yes, one day Im going to release that thing
'''right_control_frame = tk.Frame(root, bg=background_color)
right_control_frame.grid(row=0, column=3, rowspan=2, sticky="ns")
button_start_program = tk.Button(right_control_frame, text="Add this video",bg=button_color, fg=text_color, command=lambda: finish(menu))
button_start_program.pack()
select_face_label = tk.Label(right_control_frame, text=f'Face filename: {args["face"]}', fg=text_color, bg=background_color)
select_face_label.pack()
button_select_face = tk.Button(right_control_frame, text='Select face',bg=button_color, fg=text_color, command=select_face)
button_select_face.pack()
select_target_label = tk.Label(right_control_frame, text=f'Target filename: {args["target_path"]}', fg=text_color, bg=background_color)
select_target_label.pack()
button_select_target = tk.Button(right_control_frame, text='Select target',bg=button_color, fg=text_color, command=select_target)
button_select_target.pack()
button_select_camera = tk.Button(right_control_frame, text='run from camera',bg=button_color, fg=text_color, command=select_camera)
button_select_camera.pack()
select_output_label = tk.Label(right_control_frame, text=f'output filename: {args["output"]}', fg=text_color, bg=background_color)
select_output_label.pack()
button_select_output = tk.Button(right_control_frame, text='Select output',bg=button_color, fg=text_color, command=select_output)
button_select_output.pack()
thread_amount_label = tk.Label(right_control_frame, text='Select the number of threads', fg=text_color, bg=background_color)
thread_amount_label.pack()
thread_amount_input = tk.Entry(right_control_frame)
thread_amount_input.pack()'''
def update_progress_bar(length, progress, total, gpu_usage, vram_usage, total_vram):
try:
if not runnable and not isinstance(args['target_path'], int):
filled_length = int(length * progress // total)
bar = '█' * filled_length + '—' * (length - filled_length)
percent = round(100.0 * progress / total, 1)
progress_text = f'Progress: |{bar}| {percent}% {progress}/{total}'
progress_label['text'] = progress_text
if not args['nocuda'] and not args['apple']:
usage_label1['text'] = f"gpu usage: {gpu_usage}%|VRAM usage: {vram_usage}/{total_vram}GB"
ram_usage, total_ram, cpu_usage = get_system_usage()
usage_label2['text'] = f"cpu usage: {cpu_usage}%|RAM usage: {ram_usage}/{total_ram}GB"
else:
ram_usage, total_ram, cpu_usage = get_system_usage()
usage_label1['text'] = f"cpu usage: {cpu_usage}%|RAM usage: {ram_usage}/{total_ram}GB"
#progress_var.set(text=progress_text)
root.update()
except:
return
def face_analyser_thread(frame, sw):
global alpha, codeformer
original_frame = frame
if not args['cli']:
test1 = alpha != 0
else:
test1 = args['alpha'] != 0
if test1:
faces = face_analysers[sw].get(frame)
bboxes = []
for face in faces:
if args['selective'] != '':
a = target_embedding.normed_embedding
b = face.normed_embedding
_, allow = compute_cosine_distance(a,b , 0.75)
if not allow:
continue
bboxes.append(face.bbox)
ttest1 = False
if not args['cli']:
if faceswapper_checkbox_var.get() == True:
ttest1=True
if not args['no_faceswap'] and (ttest1 == True or args['cli']):
frame = face_swappers[sw].get(frame, face, get_source_face(), paste_back=True)
try:
test1 = checkbox_var.get() == 1
test2 = not enhancer_choice.get() == "codeformer"
except:
test1 = False
test2 = False
if (test1 and test2) or (args['face_enhancer'] != 'none' and args['cli'] and args['face_enhancer'] != 'codeformer'):
try:
i = face.bbox
x1, y1, x2, y2 = int(i[0]),int(i[1]),int(i[2]),int(i[3])
x1 = max(x1-adjust_x1, 0)
y1 = max(y1-adjust_y1, 0)
x2 = min(x2+adjust_x2, width)
y2 = min(y2+adjust_y2, height)
facer = frame[y1:y2, x1:x2]
if not args['cli']:
if enhancer_choice.get() == "fastface enhancer":
facex = upscale_image(facer, load_generator())
elif enhancer_choice.get() == "gfpgan":
facex = restorer_enhance(facer)
elif enhancer_choice.get() == "gfpgan onnx":
facex, _ = load_gfpganonnx().forward(facer)
elif enhancer_choice.get() == "real esrgan":
facex = realesrgan_enhance(facer)
else:
if args['face_enhancer'] == 'gfpgan':
facex = restorer_enhance(facer)
elif args['face_enhancer'] == 'ffe' and not args['lowmem']:
facex = upscale_image(facer, load_generator())
elif args['face_enhancer'] == "gpfgan_onnx":
facex, _ = load_gfpganonnx().forward(facer)
elif args['face_enhancer'] == "real_esrgan":
facex = realesrgan_enhance(facer)
facex = cv2.resize(facex, ((x2-x1), (y2-y1)))
frame[y1:y2, x1:x2] = facex
except Exception as e:
print(e)
if not args['cli']:
if enhancer_choice.get() == "codeformer" and checkbox_var.get() == 1 :
if args['fastload']:
from plugins.codeformer_app_cv2 import inference_app as codeformer
#frame, background enhance bool true, face upscample bool true, upscale int 2,
# codeformer fidelity float 0.8, skip_if_no_face bool false
frame = codeformer(frame, codeformer_enhance_background_var.get(), codeformer_upscale_face_var.get(), codeformer_upscale_amount_value, codeformer_fidelity, codeformer_skip_if_no_face_var.get())
else:
if args['face_enhancer'] == 'codeformer':
if args['fastload']:
from plugins.codeformer_app_cv2 import inference_app as codeformer
frame = codeformer(frame, args['codeformer_background_enhance'], args['codeformer_face_upscale'], args['codeformer_upscale'], float(args['codeformer_fidelity']), args['codeformer_skip_if_no_face'])
if not args['cli']:
test1 = alpha != 1
else:
test1 = args['alpha'] != 1
if test1:
print(alpha)
frame = merge_face(frame, original_frame, alpha)
return bboxes, frame, original_frame
return [], frame, original_frame
def cv2_image_to_tkinter(cv2_image, target_width, target_height):
"""Convert a cv2 image to a tkinter compatible format and resize it to fit target dimensions."""
cv2_img_rgb = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(cv2_img_rgb)
target_width -= 30
target_height -= 30
# Resize the image while maintaining its aspect ratio
image_aspect = pil_image.width / pil_image.height
target_aspect = target_width / target_height
if image_aspect > target_aspect:
# Image is wider than target, fit to width
width = target_width
height = int(target_width / image_aspect)
else:
# Image is taller or equal to target, fit to height
height = target_height
width = int(target_height * image_aspect)
pil_image_resized = pil_image.resize((width, height), Image.Resampling.LANCZOS)
return ImageTk.PhotoImage(pil_image_resized)
def frame_updater():
try:
if not isinstance(original_frame, NoneType) and not isinstance(swapped_frame, NoneType):
#original_frame,swapped_frame
sizex1, sizey1 = right_frame1.winfo_width(), right_frame1.winfo_height()
sizex2, sizey2 = right_frame2.winfo_width(), right_frame2.winfo_height()
tk_image = cv2_image_to_tkinter(original_frame, sizex1, sizey1)
original_image_label.configure(image=tk_image)
original_image_label.image = tk_image # Keep a reference to prevent garbage collection
tk_image = cv2_image_to_tkinter(swapped_frame, sizex2, sizey2)
swapped_image_label.configure(image=tk_image)
swapped_image_label.image = tk_image
else:
original_image_label.configure(image=None)
original_image_label.image = None # Keep a reference to prevent garbage collection
swapped_image_label.configure(image=None)
swapped_image_label.image = None
except:
pass
root.after(30, frame_updater)
def get_embedding(face_image):
try:
return face_analysers[0].get(face_image)
except IndexError:
return None
def process_image(input_path, output_path, sw):
image = cv2.imread(input_path)
bbox, image, original_frame = face_analyser_thread(image,sw)
try:
test1 = checkbox_var.get() == 1
except:
test1 = False
if test1 or (args['face_enhancer'] != 'none' and args['cli']):
image = restorer_enhance(image)
cv2.imwrite(output_path, image)
def just_preload_them(sw, frame):
for i in range(int(args['threads'])):
threading.Thread(target=load, args=(sw, frame)).start()
def load(sw,frame):
faces = face_analysers[sw].get(frame)
face = list(faces)[0]
face_swappers[sw].get(frame, face, source_face, paste_back=True)
def source_face_creator(input_face):
global source_face
source_face = sorted(face_analysers[0].get(input_face), key=lambda x: x.bbox[0])[0]
def optimize_saver():
import pickle
x = face_analysers[0].get(cv2.imread(args['face']))[0] #sorted(face_analysers[0].get(cv2.imread(args['face'])), key=lambda x: x.bbox[0])[0]
#print(x)
ll = {}
for key, value in x.items():
ll[key] = value
ll = simulate(ll['bbox'], ll['kps'],ll['det_score'],ll['embedding'], ll['embedding'])
#print(key, ":", value)
#frame = face_swappers[0].get(cv2.imread(args['face']), face, get_source_face(), paste_back=True)
#ll.bbox = x.get('bbox')
#ll.kps = x.kps
#ll.det_score = x.det_score
#ll.embedding = x.embedding
with open('ll.pkl', 'wb') as file:
pickle.dump(ll, file)
with open('ll.pkl', 'rb') as file:
loaded_data = pickle.load(file)
frame = face_swappers[0].get(cv2.imread(args['face']), loaded_data, get_source_face(), paste_back=True)
print('nice')
exit()
def open_second_window():
def run_it_please():
global runnable
runnable = 0
second_window.destroy()
second_window = tk.Toplevel(root)
label = tk.Label(second_window, text='press the button to start rendering')
label.pack()
button = tk.Button(second_window, text='Start', command=run_it_please)
button.pack()
def main():
global old_index, runnable, args, width, height, frame_index, face_analysers,frame_move, face_swappers, source_face, progress_var, target_embedding, count, frame_number, listik, frame, original_frame,swapped_frame, cap
#start = time.time()
if not args['fastload']:
face_swappers, face_analysers = prepare_swappers_and_analysers(args)
#optimize_saver()
#if args['fastload']:
# source_face_thread = threading.Thread(target=source_face_creator, args=(input_face,))
# source_face_thread.start()
#else:
# source_face = sorted(face_analysers[0].get(input_face), key=lambda x: x.bbox[0])[0]
gpu_usage = 0
vram_usage = 0
play = 0
if args['selective'] != '':
if args['selective'] != True:
im = cv2.imread(args['selective'])
#im = cv2.resize(im, (640, 640))
target_embedding = get_embedding(im)[0]
if args['image'] == True :
images = []
if args['batch'] != "":
for i in os.listdir(args['target_path']):
if is_picture_file(i):
images.append([os.path.join(args['target_path'], i), os.path.join(args['output'], f"{i}{args['batch']}.png")])
else:
images.append([args['target_path'], args['output']])
original_threads = threading.active_count()
image_amount = len(images)
for it, i in tqdm(enumerate(images)):
if not args['nocuda'] and not args['apple']:
vram_usage, gpu_usage = round(gpu_memory_total - torch.cuda.mem_get_info(device)[0] / 1024**3,2), torch.cuda.utilization(device=device)
listik = [it, image_amount, gpu_usage, vram_usage, gpu_memory_total]
else:
listik = [it, image_amount, 0, 0, 0]
threading.Thread(target=process_image, args=(i[0], i[1], it%len(face_swappers))).start()
while threading.active_count() > (int(args['threads']) + original_threads):
time.sleep(0.01)
while threading.active_count() > original_threads:
time.sleep(0.01)
print("image processing finished")
exit()
caps = []
if args['batch'] == '':
caps.append(create_cap())
else:
for file in os.listdir(args['target_path']):
if is_video_file(file):
caps.append(create_batch_cap(file))
#if args['fastload']:
# source_face_thread.join()
#print(time.time()-start)
if args['fastload'] and args['cli']:
tx.join()
elif args['fastload'] and not args['cli']:
for t in tx:
t.join()
runnable = not int(args['cli'])
#if not args['cli'] and not args['preview']:
# open_second_window()
for cap, fps, width, height, out, name, file, frame_number in caps:
#root.after(1, update_progress_length, frame_number)
#update_progress_bar( 10, 0, frame_number)
count = -1
frame_index = count
if args['vcam']:
cam = pyvirtualcam.Camera(width=width, height=height, fps=fps)
with tqdm(total=frame_number) as progressbar:
temp = []
bbox = []
start = time.time()
'''if not args['preview']:
for i in range(int(args['threads'])):
if args['experimental']:
frame = cap.read()
if isinstance(frame, NoneType):
break
else:
ret, frame = cap.read()
if not ret:
break
temp.append(ThreadWithReturnValue(target=face_analyser_thread, args=(frame,count%len(face_swappers))))
temp[-1].start()
count += 1'''
xxs = True
old_index = 0
while True:
try:
if runnable == 0 and ((not runnable and not args['cli']) or args['cli']):
count += 1
#if not isinstance(args['target_path'], int):
frame_index = count
if count == 0:
progressbar.reset()
if args['experimental']:
frame = cap.read()
if isinstance(frame, NoneType): #== None:
break
else:
ret, frame = cap.read()
if not ret:
break
temp.append(ThreadWithReturnValue(target=face_analyser_thread, args=(frame,count%len(face_swappers))))
temp[-1].start()
if count % 1000 == 999:
torch.cuda.empty_cache()
if len(temp) < int(args['threads']) * len(face_swappers) and ret:
continue
while len(temp) >= int(args['threads']) * len(face_swappers):
bbox, frame, original_frame = temp.pop(0).join()
xxs = True
else:
if not frame_index == old_index:
bbox, frame, original_frame = face_analyser_thread(get_nth_frame(cap, frame_index-1), count%len(face_swappers))
xxs = False
if not args['cli']:
if show_bbox_var.get() == 1:
for i in bbox:
x1, y1, x2, y2 = int(i[0]),int(i[1]),int(i[2]),int(i[3])
x1 = max(x1-adjust_x1, 0)
y1 = max(y1-adjust_y1, 0)
x2 = min(x2+adjust_x2, width)
y2 = min(y2+adjust_y2, height)
color = (0, 255, 0) # Green color (BGR format)
thickness = 2 # Line thickness
cv2.rectangle(frame, (x1,y1), (x2,y2), color, thickness)
if time.time() - start > 1:
start = time.time()
if not args['nocuda'] and not args['apple']:
vram_usage, gpu_usage = round(gpu_memory_total - torch.cuda.mem_get_info(device)[0] / 1024**3,2), torch.cuda.utilization(device=device)
progressbar.set_description(f"VRAM: {vram_usage}/{gpu_memory_total} GB, usage: {gpu_usage}%")
if not args['cli']:
if not args['nocuda'] and not args['apple']:
listik = [count, frame_number,gpu_usage, vram_usage,gpu_memory_total]
else:
listik = [count, frame_number, 0, 0, 0]
swapped_frame = frame
#cv2.imshow('Face Detection', frame)
if not args['cli']:
if show_external_swapped_preview_var.get() == 1:
cv2.imshow('swapped frame', frame)
if runnable == 0 and ((not runnable and not args['cli']) or args['cli']) and xxs:
out.write(frame)
if args['vcam']:
cam.send(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
if runnable:
if not isinstance(args['target_path'], int):
frame_index += frame_move
if frame_index < 1:
frame_index = 1
elif frame_index > frame_number:
frame_index = frame_number
old_index = frame_index
if args['extract_output'] != '':
cv2.imwrite(os.path.join(args['extract_output'], os.path.basename(file), f"frame_{count:05d}.png"), frame)
if runnable == 0 and ((not runnable and not args['cli']) or args['cli']):
progressbar.update(1)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
except KeyboardInterrupt:
break
except Exception as e:
if "main thread is not in main loop" in str(e):
return
print(f"HUSTON, WE HAD AN EXCEPTION, PROCEED WITH CAUTION, SEND RICHARD THIS: {e}. Line 947")
for i in temp:
bbox, frame, original_frame = i.join()
if not args['cli']:
if show_bbox_var.get() == 1:
for i in bbox:
x1, y1, x2, y2 = int(i[0]),int(i[1]),int(i[2]),int(i[3])
x1 = max(x1-adjust_x1, 0)
y1 = max(y1-adjust_y1, 0)
x2 = min(x2+adjust_x2, width)
y2 = min(y2+adjust_y2, height)
color = (0, 255, 0) # Green color (BGR format)
thickness = 2 # Line thickness
cv2.rectangle(frame, (x1,y1), (x2,y2), color, thickness)
if time.time() - start > 1:
start = time.time()
if not args['nocuda'] and not args['apple']:
vram_usage, gpu_usage = round(gpu_memory_total - torch.cuda.mem_get_info(device)[0] / 1024**3,2), torch.cuda.utilization(device=device)
progressbar.set_description(f"VRAM: {vram_usage}/{gpu_memory_total} GB, usage: {gpu_usage}%")
if runnable == 0 and ((not runnable and not args['cli']) or args['cli']):
out.write(frame)
if args['vcam']:
cam.send(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
if args['extract_output'] != '':
cv2.imwrite(os.path.join(args['extract_output'], os.path.basename(file), f"frame_{count:05d}.png"), frame)
progressbar.update(1)
if not args['cli']:
if show_external_swapped_preview_var.get() == 1:
cv2.imshow('swapped frame', frame)
#if not args['cli']:
#cv2.imshow('Face Detection', frame)
#update_progress_bar(10, count, frame_number)
if runnable:
old_number = frame_index
while frame_index == old_number:
time.sleep(0.01)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
out.release()
cap.release()
cv2.destroyAllWindows()
if args['batch'] != '':
try:
add_audio_from_video(os.path.join(args['output'], f"{file}{args['batch']}_temp.mp4"),os.path.join(args['output'], file) ,os.path.join(args['output'], f"{file}{args['batch']}"))
os.remove(os.path.join(args['output'], f"{file}{args['batch']}_temp.mp4"))
except Exception as e:
print(f"SOMETHING WENT WRONG DURING THE ADDING OF THE AUDIO TO THE VIDEO!file: {os.path.join(args['output'], file)}, error:{e}")
else:
if not isinstance(args['target_path'], int):
try: