diff --git a/benchmarks/benchmark_tensorrt.py b/benchmarks/benchmark_tensorrt.py index 465310c..6e2a081 100644 --- a/benchmarks/benchmark_tensorrt.py +++ b/benchmarks/benchmark_tensorrt.py @@ -73,6 +73,8 @@ def tensorrt_any( image_height: int, image_width: int, ) -> BenchmarkResults: + import torch + trt_path = prepare_tensorrt() diffusion_dir = trt_path / "demo" / "Diffusion" if str(diffusion_dir) not in sys.path: @@ -102,7 +104,7 @@ def tensorrt_any( pipeline = StableDiffusionPipeline(**options) pipeline.loadEngines( - engine_dir=f"engine-{model_version}", + engine_dir=f"engine-{model_version}-{torch.cuda.get_device_name(0)}", framework_model_dir="pytorch_model", onnx_dir=f"onnx-{model_version}", onnx_opset=18, @@ -116,7 +118,7 @@ def tensorrt_any( force_optimize=False, static_batch=True, static_shape=True, - timing_cache=f"cache-{model_version}", + timing_cache=f"cache-{model_version}-{torch.cuda.get_device_name(0)}", ) # Load resources diff --git a/benchmarks/compare_table.py b/benchmarks/compare_table.py new file mode 100644 index 0000000..b380897 --- /dev/null +++ b/benchmarks/compare_table.py @@ -0,0 +1,72 @@ +import json +import statistics +from argparse import ArgumentParser +from collections import defaultdict +from pathlib import Path + +from rich.console import Console +from rich.table import Table + +README_PATH = Path(__file__).parent.parent / "README.md" + + +def main(): + parser = ArgumentParser() + parser.add_argument("results_files", type=Path, nargs="+") + + options = parser.parse_args() + results = { + result_file.stem: json.loads(result_file.read_text()) + for result_file in options.results_files + } + + benchmarks = defaultdict(dict) + for result_name, result_values in results.items(): + for timing in result_values["timings"]: + benchmarks[(timing["category"], timing["name"])][result_name] = timing[ + "timings" + ] + + with Console() as console: + table = Table() + table.add_column("Benchmark") + for result_name in results.keys(): + table.add_column(" ".join(map(str.title, result_name.split("-")))) + + for benchmark_key, benchmark_results in sorted( + benchmarks.items(), + key=lambda kv: kv[0], + ): + if "CPU" in benchmark_key[0]: + continue + + row = [f"{benchmark_key[0].split(' ')[0]:5} {benchmark_key[1]}"] + raw_values = [] + for result_name in results.keys(): + if result_name in benchmark_results: + raw_values.append( + ( + statistics.mean(benchmark_results[result_name]), + statistics.stdev(benchmark_results[result_name]), + ) + ) + else: + raw_values.append((float("nan"), float("nan"))) + + # Bold the best result + best_index = raw_values.index(min(raw_values)) + for i, (mean, std) in enumerate(raw_values): + if i == best_index: + row.append(f"[bold][green]{mean:.2f}s[/green][/bold] ± {std:.2f}s") + elif mean is not float("nan"): + row.append(f"{mean:.2f}s ± {std:.2f}s") + else: + row.append("N/A") + + table.add_row(*row) + + console.print(table) + + +if __name__ == "__main__": + main()