Skip to content

Latest commit

 

History

History
128 lines (108 loc) · 4.51 KB

onnxPython.md

File metadata and controls

128 lines (108 loc) · 4.51 KB

Use Onnxruntime with python

1. Install CUDA & cuDNN

2.1 create environment 'AIEnv'.
2.2 excute pip in the environment cmd (conda activate AIEnv).
2.3 vscode choose the environment to excute.

3. Install onnxruntime

pip install onnxruntime
(excute in AIEnv environment)

import onnxruntime as ort
session = ort.InferenceSession(model_file_path)
# session.run(...)

5. Run with GPU

1. DirectML

pip install onnxruntime-directml

import onnxruntime
session = onnxruntime.InferenceSession(model_file_path, providers=['DmlExecutionProvider'])
print("onnxruntime providers:",onnxruntime.get_device(),onnxruntime.get_available_providers())
print("session providers:", session.get_providers())

expect:
onnxruntime providers: CPU-DML ['DmlExecutionProvider', 'CPUExecutionProvider']
session providers: ['DmlExecutionProvider', 'CPUExecutionProvider']

case: onnxruntime providers DO NOT contains DmlExecutionProvider.
fix:(reinstall packages)
pip uninstall onnxruntime-gpu onnxruntime-directml onnxruntime
pip install onnxruntime
pip install onnxruntime-directml

2. CUDA

pip install onnxruntime-gpu

import onnxruntime
session = onnxruntime.InferenceSession(model_file_path, providers=['CUDAExecutionProvider'])
print("onnxruntime providers:",onnxruntime.get_device(),onnxruntime.get_available_providers())
print("session providers:", session.get_providers())

expect:
onnxruntime providers: GPU ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider']
session providers: ['CUDAExecutionProvider', 'CPUExecutionProvider']

case1: onnxruntime providers DO NOT contains CUDAExecutionProvider.
fix: reinstall packages as before

case2: only session providers DO NOT contains CUDAExecutionProvider.
fix: install and import torch

6. Install pytorch

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124
(excute in AIEnv environment)

import torch
print(torch.cuda.is_available(), torch.backends.cudnn.version())

expect: True 90100

6.Sameple python code:

import onnxruntime as ort
from PIL import Image
import torch
import torchvision.transforms as transforms
from torchvision.models.resnet import ResNet50_Weights

model_file_path = r"resnet50-v2-7.onnx"
image_file_path = r"dog.jpeg"

# Create ONNX runtime session
session = ort.InferenceSession(model_file_path)
print("Available providers:", session.get_providers())
print("Current provider:", session.get_provider_options())

# Read and preprocess image
image = Image.open(image_file_path)
preprocess = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(image)
input_batch = input_tensor.unsqueeze(0)

# Run inference
ort_inputs = {session.get_inputs()[0].name: input_batch.numpy()}
ort_outputs = session.run(None, ort_inputs)

# Postprocess to get softmax vector
output = ort_outputs[0]
softmax = torch.nn.functional.softmax(torch.tensor(output), dim=1)

# Extract top 10 predicted classes
top10 = torch.topk(softmax, 10)

# Get label mapping
weights = ResNet50_Weights.DEFAULT
labels = weights.meta["categories"]

# Print results to console
print("Top 10 predictions for ResNet50 v2...")
print("--------------------------------------------------------------")
for i in range(10):
    print(f"Label: {labels[top10.indices[0][i]]}, Confidence: {top10.values[0][i].item():.4f}")

expect:
Available providers: ['CPUExecutionProvider']
Current provider: {'CPUExecutionProvider': {}}
Top 10 predictions for ResNet50 v2...
Label: golden retriever, Confidence: 0.8391
Label: kuvasz, Confidence: 0.0905
Label: otterhound, Confidence: 0.0135
Label: clumber, Confidence: 0.0101
Label: Sussex spaniel, Confidence: 0.0072
Label: Labrador retriever, Confidence: 0.0060
Label: Tibetan terrier, Confidence: 0.0035
Label: Great Pyrenees, Confidence: 0.0028
Label: Saluki, Confidence: 0.0027
Label: English setter, Confidence: 0.0021