forked from mfem/mfem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex25.cpp
1033 lines (907 loc) · 30.1 KB
/
ex25.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// MFEM Example 25
//
// Compile with: make ex25
//
// Sample runs: ex25 -o 2 -f 1.0 -ref 2 -prob 0
// ex25 -o 3 -f 10.0 -ref 2 -prob 1
// ex25 -o 2 -f 5.0 -ref 4 -prob 2
// ex25 -o 2 -f 1.0 -ref 2 -prob 3
// ex25 -o 2 -f 1.0 -ref 2 -prob 0 -m ../data/beam-quad.mesh
// ex25 -o 2 -f 8.0 -ref 3 -prob 4 -m ../data/inline-quad.mesh
// ex25 -o 2 -f 2.0 -ref 1 -prob 4 -m ../data/inline-hex.mesh
//
// Device sample runs:
// ex25 -o 2 -f 8.0 -ref 3 -prob 4 -m ../data/inline-quad.mesh -pa -d cuda
// ex25 -o 2 -f 2.0 -ref 1 -prob 4 -m ../data/inline-hex.mesh -pa -d cuda
//
// Description: This example code solves a simple electromagnetic wave
// propagation problem corresponding to the second order
// indefinite Maxwell equation
//
// (1/mu) * curl curl E - \omega^2 * epsilon E = f
//
// with a Perfectly Matched Layer (PML).
//
// The example demonstrates discretization with Nedelec finite
// elements in 2D or 3D, as well as the use of complex-valued
// bilinear and linear forms. Several test problems are included,
// with prob = 0-3 having known exact solutions, see "On perfectly
// matched layers for discontinuous Petrov-Galerkin methods" by
// Vaziri Astaneh, Keith, Demkowicz, Comput Mech 63, 2019.
//
// We recommend viewing Example 22 before viewing this example.
#include "mfem.hpp"
#include <memory>
#include <fstream>
#include <iostream>
#ifdef _WIN32
#define jn(n, x) _jn(n, x)
#define yn(n, x) _yn(n, x)
#endif
using namespace std;
using namespace mfem;
// Class for setting up a simple Cartesian PML region
class PML
{
private:
Mesh *mesh;
int dim;
// Length of the PML Region in each direction
Array2D<real_t> length;
// Computational Domain Boundary
Array2D<real_t> comp_dom_bdr;
// Domain Boundary
Array2D<real_t> dom_bdr;
// Integer Array identifying elements in the PML
// 0: in the PML, 1: not in the PML
Array<int> elems;
// Compute Domain and Computational Domain Boundaries
void SetBoundaries();
public:
// Constructor
PML(Mesh *mesh_,Array2D<real_t> length_);
// Return Computational Domain Boundary
Array2D<real_t> GetCompDomainBdr() {return comp_dom_bdr;}
// Return Domain Boundary
Array2D<real_t> GetDomainBdr() {return dom_bdr;}
// Return Markers list for elements
Array<int> * GetMarkedPMLElements() {return &elems;}
// Mark elements in the PML region
void SetAttributes(Mesh *mesh_);
// PML complex stretching function
void StretchFunction(const Vector &x, vector<complex<real_t>> &dxs);
};
// Class for returning the PML coefficients of the bilinear form
class PMLDiagMatrixCoefficient : public VectorCoefficient
{
private:
PML * pml = nullptr;
void (*Function)(const Vector &, PML *, Vector &);
public:
PMLDiagMatrixCoefficient(int dim, void(*F)(const Vector &, PML *,
Vector &),
PML * pml_)
: VectorCoefficient(dim), pml(pml_), Function(F)
{}
using VectorCoefficient::Eval;
virtual void Eval(Vector &K, ElementTransformation &T,
const IntegrationPoint &ip)
{
real_t x[3];
Vector transip(x, 3);
T.Transform(ip, transip);
K.SetSize(vdim);
(*Function)(transip, pml, K);
}
};
void maxwell_solution(const Vector &x, vector<complex<real_t>> &Eval);
void E_bdr_data_Re(const Vector &x, Vector &E);
void E_bdr_data_Im(const Vector &x, Vector &E);
void E_exact_Re(const Vector &x, Vector &E);
void E_exact_Im(const Vector &x, Vector &E);
void source(const Vector &x, Vector & f);
// Functions for computing the necessary coefficients after PML stretching.
// J is the Jacobian matrix of the stretching function
void detJ_JT_J_inv_Re(const Vector &x, PML * pml, Vector &D);
void detJ_JT_J_inv_Im(const Vector &x, PML * pml, Vector &D);
void detJ_JT_J_inv_abs(const Vector &x, PML * pml, Vector &D);
void detJ_inv_JT_J_Re(const Vector &x, PML * pml, Vector &D);
void detJ_inv_JT_J_Im(const Vector &x, PML * pml, Vector &D);
void detJ_inv_JT_J_abs(const Vector &x, PML * pml, Vector &D);
Array2D<real_t> comp_domain_bdr;
Array2D<real_t> domain_bdr;
real_t mu = 1.0;
real_t epsilon = 1.0;
real_t omega;
int dim;
bool exact_known = false;
template <typename T> T pow2(const T &x) { return x*x; }
enum prob_type
{
beam, // Wave propagating in a beam-like domain
disc, // Point source propagating in the square-disc domain
lshape, // Point source propagating in the L-shape domain
fichera, // Point source propagating in the fichera domain
load_src // Approximated point source with PML all around
};
prob_type prob;
int main(int argc, char *argv[])
{
// 1. Parse command-line options.
const char *mesh_file = nullptr;
int order = 1;
int ref_levels = 3;
int iprob = 4;
real_t freq = 5.0;
bool herm_conv = true;
bool umf_solver = false;
bool visualization = 1;
bool pa = false;
const char *device_config = "cpu";
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&iprob, "-prob", "--problem", "Problem case"
" 0: beam, 1: disc, 2: lshape, 3: fichera, 4: General");
args.AddOption(&ref_levels, "-ref", "--refinements",
"Number of refinements");
args.AddOption(&mu, "-mu", "--permeability",
"Permeability of free space (or 1/(spring constant)).");
args.AddOption(&epsilon, "-eps", "--permittivity",
"Permittivity of free space (or mass constant).");
args.AddOption(&freq, "-f", "--frequency",
"Frequency (in Hz).");
args.AddOption(&herm_conv, "-herm", "--hermitian", "-no-herm",
"--no-hermitian", "Use convention for Hermitian operators.");
#ifdef MFEM_USE_SUITESPARSE
args.AddOption(&umf_solver, "-umf", "--umfpack", "-no-umf",
"--no-umfpack", "Use the UMFPack Solver.");
#endif
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa",
"--no-partial-assembly", "Enable Partial Assembly.");
args.AddOption(&device_config, "-d", "--device",
"Device configuration string, see Device::Configure().");
args.Parse();
if (iprob > 4) { iprob = 4; }
prob = (prob_type)iprob;
// 2. Enable hardware devices such as GPUs, and programming models such as
// CUDA, OCCA, RAJA and OpenMP based on command line options.
Device device(device_config);
device.Print();
// 3. Setup the mesh
if (!mesh_file)
{
exact_known = true;
switch (prob)
{
case beam:
mesh_file = "../data/beam-hex.mesh";
break;
case disc:
mesh_file = "../data/square-disc.mesh";
break;
case lshape:
mesh_file = "../data/l-shape.mesh";
break;
case fichera:
mesh_file = "../data/fichera.mesh";
break;
default:
exact_known = false;
mesh_file = "../data/inline-quad.mesh";
break;
}
}
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
args.PrintOptions(cout);
Mesh * mesh = new Mesh(mesh_file, 1, 1);
dim = mesh->Dimension();
// Angular frequency
omega = real_t(2.0 * M_PI) * freq;
// Setup PML length
Array2D<real_t> length(dim, 2); length = 0.0;
// 4. Setup the Cartesian PML region.
switch (prob)
{
case disc:
length = 0.2;
break;
case lshape:
length(0, 0) = 0.1;
length(1, 0) = 0.1;
break;
case fichera:
length(0, 1) = 0.5;
length(1, 1) = 0.5;
length(2, 1) = 0.5;
break;
case beam:
length(0, 1) = 2.0;
break;
default:
length = 0.25;
break;
}
PML * pml = new PML(mesh,length);
comp_domain_bdr = pml->GetCompDomainBdr();
domain_bdr = pml->GetDomainBdr();
// 5. Refine the mesh to increase the resolution.
for (int l = 0; l < ref_levels; l++)
{
mesh->UniformRefinement();
}
// 6. Set element attributes in order to distinguish elements in the
// PML region
pml->SetAttributes(mesh);
// 7. Define a finite element space on the mesh. Here we use the Nedelec
// finite elements of the specified order.
FiniteElementCollection *fec = new ND_FECollection(order, dim);
FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec);
int size = fespace->GetTrueVSize();
cout << "Number of finite element unknowns: " << size << endl;
// 8. Determine the list of true essential boundary dofs. In this example,
// the boundary conditions are defined based on the specific mesh and the
// problem type.
Array<int> ess_tdof_list;
Array<int> ess_bdr;
if (mesh->bdr_attributes.Size())
{
ess_bdr.SetSize(mesh->bdr_attributes.Max());
ess_bdr = 1;
if (prob == lshape || prob == fichera)
{
ess_bdr = 0;
for (int j = 0; j < mesh->GetNBE(); j++)
{
Vector center(dim);
int bdrgeom = mesh->GetBdrElementGeometry(j);
ElementTransformation * tr = mesh->GetBdrElementTransformation(j);
tr->Transform(Geometries.GetCenter(bdrgeom),center);
int k = mesh->GetBdrAttribute(j);
switch (prob)
{
case lshape:
if (center[0] == 1_r || center[0] == 0.5_r ||
center[1] == 0.5_r)
{
ess_bdr[k - 1] = 1;
}
break;
case fichera:
if (center[0] == -1_r || center[0] == 0_r ||
center[1] == 0_r || center[2] == 0_r)
{
ess_bdr[k - 1] = 1;
}
break;
default:
break;
}
}
}
}
fespace->GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
// 9. Setup Complex Operator convention
ComplexOperator::Convention conv =
herm_conv ? ComplexOperator::HERMITIAN : ComplexOperator::BLOCK_SYMMETRIC;
// 10. Set up the linear form b(.) which corresponds to the right-hand side of
// the FEM linear system.
VectorFunctionCoefficient f(dim, source);
ComplexLinearForm b(fespace, conv);
if (prob == load_src)
{
b.AddDomainIntegrator(NULL, new VectorFEDomainLFIntegrator(f));
}
b.Vector::operator=(0.0);
b.Assemble();
// 11. Define the solution vector x as a complex finite element grid function
// corresponding to fespace.
ComplexGridFunction x(fespace);
x = 0.0;
VectorFunctionCoefficient E_Re(dim, E_bdr_data_Re);
VectorFunctionCoefficient E_Im(dim, E_bdr_data_Im);
x.ProjectBdrCoefficientTangent(E_Re, E_Im, ess_bdr);
// 12. Set up the sesquilinear form a(.,.)
//
// In Comp
// Domain: 1/mu (Curl E, Curl F) - omega^2 * epsilon (E,F)
//
// In PML: 1/mu (1/det(J) J^T J Curl E, Curl F)
// - omega^2 * epsilon (det(J) * (J^T J)^-1 * E, F)
//
// where J denotes the Jacobian Matrix of the PML Stretching function
Array<int> attr;
Array<int> attrPML;
if (mesh->attributes.Size())
{
attr.SetSize(mesh->attributes.Max());
attrPML.SetSize(mesh->attributes.Max());
attr = 0; attr[0] = 1;
attrPML = 0;
if (mesh->attributes.Max() > 1)
{
attrPML[1] = 1;
}
}
ConstantCoefficient muinv(1_r / mu);
ConstantCoefficient omeg(-pow2(omega) * epsilon);
RestrictedCoefficient restr_muinv(muinv,attr);
RestrictedCoefficient restr_omeg(omeg,attr);
// Integrators inside the computational domain (excluding the PML region)
SesquilinearForm a(fespace, conv);
a.AddDomainIntegrator(new CurlCurlIntegrator(restr_muinv),NULL);
a.AddDomainIntegrator(new VectorFEMassIntegrator(restr_omeg),NULL);
int cdim = (dim == 2) ? 1 : dim;
PMLDiagMatrixCoefficient pml_c1_Re(cdim,detJ_inv_JT_J_Re, pml);
PMLDiagMatrixCoefficient pml_c1_Im(cdim,detJ_inv_JT_J_Im, pml);
ScalarVectorProductCoefficient c1_Re(muinv,pml_c1_Re);
ScalarVectorProductCoefficient c1_Im(muinv,pml_c1_Im);
VectorRestrictedCoefficient restr_c1_Re(c1_Re,attrPML);
VectorRestrictedCoefficient restr_c1_Im(c1_Im,attrPML);
PMLDiagMatrixCoefficient pml_c2_Re(dim, detJ_JT_J_inv_Re,pml);
PMLDiagMatrixCoefficient pml_c2_Im(dim, detJ_JT_J_inv_Im,pml);
ScalarVectorProductCoefficient c2_Re(omeg,pml_c2_Re);
ScalarVectorProductCoefficient c2_Im(omeg,pml_c2_Im);
VectorRestrictedCoefficient restr_c2_Re(c2_Re,attrPML);
VectorRestrictedCoefficient restr_c2_Im(c2_Im,attrPML);
// Integrators inside the PML region
a.AddDomainIntegrator(new CurlCurlIntegrator(restr_c1_Re),
new CurlCurlIntegrator(restr_c1_Im));
a.AddDomainIntegrator(new VectorFEMassIntegrator(restr_c2_Re),
new VectorFEMassIntegrator(restr_c2_Im));
// 13. Assemble the bilinear form and the corresponding linear system,
// applying any necessary transformations such as: assembly, eliminating
// boundary conditions, applying conforming constraints for
// non-conforming AMR, etc.
if (pa) { a.SetAssemblyLevel(AssemblyLevel::PARTIAL); }
a.Assemble(0);
OperatorPtr A;
Vector B, X;
a.FormLinearSystem(ess_tdof_list, x, b, A, X, B);
// 14. Solve using a direct or an iterative solver
#ifdef MFEM_USE_SUITESPARSE
if (!pa && umf_solver)
{
ComplexUMFPackSolver csolver(*A.As<ComplexSparseMatrix>());
csolver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS;
csolver.SetPrintLevel(1);
csolver.Mult(B, X);
}
#endif
// 14a. Set up the Bilinear form a(.,.) for the preconditioner
//
// In Comp
// Domain: 1/mu (Curl E, Curl F) + omega^2 * epsilon (E,F)
//
// In PML: 1/mu (abs(1/det(J) J^T J) Curl E, Curl F)
// + omega^2 * epsilon (abs(det(J) * (J^T J)^-1) * E, F)
if (pa || !umf_solver)
{
ConstantCoefficient absomeg(pow2(omega) * epsilon);
RestrictedCoefficient restr_absomeg(absomeg,attr);
BilinearForm prec(fespace);
prec.AddDomainIntegrator(new CurlCurlIntegrator(restr_muinv));
prec.AddDomainIntegrator(new VectorFEMassIntegrator(restr_absomeg));
PMLDiagMatrixCoefficient pml_c1_abs(cdim,detJ_inv_JT_J_abs, pml);
ScalarVectorProductCoefficient c1_abs(muinv,pml_c1_abs);
VectorRestrictedCoefficient restr_c1_abs(c1_abs,attrPML);
PMLDiagMatrixCoefficient pml_c2_abs(dim, detJ_JT_J_inv_abs,pml);
ScalarVectorProductCoefficient c2_abs(absomeg,pml_c2_abs);
VectorRestrictedCoefficient restr_c2_abs(c2_abs,attrPML);
prec.AddDomainIntegrator(new CurlCurlIntegrator(restr_c1_abs));
prec.AddDomainIntegrator(new VectorFEMassIntegrator(restr_c2_abs));
if (pa) { prec.SetAssemblyLevel(AssemblyLevel::PARTIAL); }
prec.Assemble();
// 14b. Define and apply a GMRES solver for AU=B with a block diagonal
// preconditioner based on the Gauss-Seidel or Jacobi sparse smoother.
Array<int> offsets(3);
offsets[0] = 0;
offsets[1] = fespace->GetTrueVSize();
offsets[2] = fespace->GetTrueVSize();
offsets.PartialSum();
std::unique_ptr<Operator> pc_r;
std::unique_ptr<Operator> pc_i;
real_t s = (conv == ComplexOperator::HERMITIAN) ? -1_r : 1_r;
if (pa)
{
// Jacobi Smoother
pc_r.reset(new OperatorJacobiSmoother(prec, ess_tdof_list));
pc_i.reset(new ScaledOperator(pc_r.get(), s));
}
else
{
OperatorPtr PCOpAh;
prec.SetDiagonalPolicy(mfem::Operator::DIAG_ONE);
prec.FormSystemMatrix(ess_tdof_list, PCOpAh);
// Gauss-Seidel Smoother
pc_r.reset(new GSSmoother(*PCOpAh.As<SparseMatrix>()));
pc_i.reset(new ScaledOperator(pc_r.get(), s));
}
BlockDiagonalPreconditioner BlockDP(offsets);
BlockDP.SetDiagonalBlock(0, pc_r.get());
BlockDP.SetDiagonalBlock(1, pc_i.get());
GMRESSolver gmres;
gmres.SetPrintLevel(1);
gmres.SetKDim(200);
gmres.SetMaxIter(pa ? 5000 : 2000);
gmres.SetRelTol(1e-5);
gmres.SetAbsTol(0.0);
gmres.SetOperator(*A);
gmres.SetPreconditioner(BlockDP);
gmres.Mult(B, X);
}
// 15. Recover the solution as a finite element grid function and compute the
// errors if the exact solution is known.
a.RecoverFEMSolution(X, b, x);
// If exact is known compute the error
if (exact_known)
{
VectorFunctionCoefficient E_ex_Re(dim, E_exact_Re);
VectorFunctionCoefficient E_ex_Im(dim, E_exact_Im);
int order_quad = max(2, 2 * order + 1);
const IntegrationRule *irs[Geometry::NumGeom];
for (int i = 0; i < Geometry::NumGeom; ++i)
{
irs[i] = &(IntRules.Get(i, order_quad));
}
real_t L2Error_Re = x.real().ComputeL2Error(E_ex_Re, irs,
pml->GetMarkedPMLElements());
real_t L2Error_Im = x.imag().ComputeL2Error(E_ex_Im, irs,
pml->GetMarkedPMLElements());
ComplexGridFunction x_gf0(fespace);
x_gf0 = 0.0;
real_t norm_E_Re, norm_E_Im;
norm_E_Re = x_gf0.real().ComputeL2Error(E_ex_Re, irs,
pml->GetMarkedPMLElements());
norm_E_Im = x_gf0.imag().ComputeL2Error(E_ex_Im, irs,
pml->GetMarkedPMLElements());
cout << "\n Relative Error (Re part): || E_h - E || / ||E|| = "
<< L2Error_Re / norm_E_Re
<< "\n Relative Error (Im part): || E_h - E || / ||E|| = "
<< L2Error_Im / norm_E_Im
<< "\n Total Error: "
<< sqrt(L2Error_Re*L2Error_Re + L2Error_Im*L2Error_Im) << "\n\n";
}
// 16. Save the refined mesh and the solution. This output can be viewed
// later using GLVis: "glvis -m mesh -g sol".
{
ofstream mesh_ofs("ex25.mesh");
mesh_ofs.precision(8);
mesh->Print(mesh_ofs);
ofstream sol_r_ofs("ex25-sol_r.gf");
ofstream sol_i_ofs("ex25-sol_i.gf");
sol_r_ofs.precision(8);
sol_i_ofs.precision(8);
x.real().Save(sol_r_ofs);
x.imag().Save(sol_i_ofs);
}
// 17. Send the solution by socket to a GLVis server.
if (visualization)
{
// Define visualization keys for GLVis (see GLVis documentation)
string keys;
keys = (dim == 3) ? "keys macF\n" : keys = "keys amrRljcUUuu\n";
if (prob == beam && dim == 3) {keys = "keys macFFiYYYYYYYYYYYYYYYYYY\n";}
if (prob == beam && dim == 2) {keys = "keys amrRljcUUuuu\n"; }
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock_re(vishost, visport);
sol_sock_re.precision(8);
sol_sock_re << "solution\n"
<< *mesh << x.real() << keys
<< "window_title 'Solution real part'" << flush;
socketstream sol_sock_im(vishost, visport);
sol_sock_im.precision(8);
sol_sock_im << "solution\n"
<< *mesh << x.imag() << keys
<< "window_title 'Solution imag part'" << flush;
GridFunction x_t(fespace);
x_t = x.real();
socketstream sol_sock(vishost, visport);
sol_sock.precision(8);
sol_sock << "solution\n"
<< *mesh << x_t << keys << "autoscale off\n"
<< "window_title 'Harmonic Solution (t = 0.0 T)'"
<< "pause\n" << flush;
cout << "GLVis visualization paused."
<< " Press space (in the GLVis window) to resume it.\n";
int num_frames = 32;
int i = 0;
while (sol_sock)
{
real_t t = (real_t)(i % num_frames) / num_frames;
ostringstream oss;
oss << "Harmonic Solution (t = " << t << " T)";
add(cos(real_t(2.0 * M_PI) * t), x.real(),
sin(real_t(2.0 * M_PI) * t), x.imag(), x_t);
sol_sock << "solution\n"
<< *mesh << x_t
<< "window_title '" << oss.str() << "'" << flush;
i++;
}
}
// 18. Free the used memory.
delete pml;
delete fespace;
delete fec;
delete mesh;
return 0;
}
void source(const Vector &x, Vector &f)
{
Vector center(dim);
real_t r = 0.0;
for (int i = 0; i < dim; ++i)
{
center(i) = 0.5_r * (comp_domain_bdr(i, 0) + comp_domain_bdr(i, 1));
r += pow2(x[i] - center[i]);
}
real_t n = 5_r * omega * sqrt(epsilon * mu) / real_t(M_PI);
real_t coeff = pow2(n) / real_t(M_PI);
real_t alpha = -pow2(n) * r;
f = 0.0;
f[0] = coeff * exp(alpha);
}
void maxwell_solution(const Vector &x, vector<complex<real_t>> &E)
{
// Initialize
for (int i = 0; i < dim; ++i)
{
E[i] = 0.0;
}
constexpr complex<real_t> zi = complex<real_t>(0., 1.);
real_t k = omega * sqrt(epsilon * mu);
switch (prob)
{
case disc:
case lshape:
case fichera:
{
Vector shift(dim);
shift = 0.0;
if (prob == fichera) { shift = 1.0; }
if (prob == disc) { shift = -0.5; }
if (prob == lshape) { shift = -1.0; }
if (dim == 2)
{
real_t x0 = x(0) + shift(0);
real_t x1 = x(1) + shift(1);
real_t r = sqrt(x0 * x0 + x1 * x1);
real_t beta = k * r;
// Bessel functions
complex<real_t> Ho, Ho_r, Ho_rr;
Ho = real_t(jn(0, beta)) + zi * real_t(yn(0, beta));
Ho_r = -k * (real_t(jn(1, beta)) + zi * real_t(yn(1, beta)));
Ho_rr = -k * k * (1_r / beta *
(real_t(jn(1, beta)) + zi * real_t(yn(1, beta))) -
(real_t(jn(2, beta)) + zi * real_t(yn(2, beta))));
// First derivatives
real_t r_x = x0 / r;
real_t r_y = x1 / r;
real_t r_xy = -(r_x / r) * r_y;
real_t r_xx = (1_r / r) * (1_r - r_x * r_x);
complex<real_t> val, val_xx, val_xy;
val = real_t(0.25) * zi * Ho;
val_xx = real_t(0.25) * zi * (r_xx * Ho_r + r_x * r_x * Ho_rr);
val_xy = real_t(0.25) * zi * (r_xy * Ho_r + r_x * r_y * Ho_rr);
E[0] = zi / k * (k * k * val + val_xx);
E[1] = zi / k * val_xy;
}
else if (dim == 3)
{
real_t x0 = x(0) + shift(0);
real_t x1 = x(1) + shift(1);
real_t x2 = x(2) + shift(2);
real_t r = sqrt(x0 * x0 + x1 * x1 + x2 * x2);
real_t r_x = x0 / r;
real_t r_y = x1 / r;
real_t r_z = x2 / r;
real_t r_xx = (1_r / r) * (1_r - r_x * r_x);
real_t r_yx = -(r_y / r) * r_x;
real_t r_zx = -(r_z / r) * r_x;
complex<real_t> val, val_r, val_rr;
val = exp(zi * k * r) / r;
val_r = val / r * (zi * k * r - 1_r);
val_rr = val / (r * r) * (-k * k * r * r
- real_t(2) * zi * k * r + real_t(2));
complex<real_t> val_xx, val_yx, val_zx;
val_xx = val_rr * r_x * r_x + val_r * r_xx;
val_yx = val_rr * r_x * r_y + val_r * r_yx;
val_zx = val_rr * r_x * r_z + val_r * r_zx;
complex<real_t> alpha = zi * k / real_t(4) / (real_t) M_PI / k / k;
E[0] = alpha * (k * k * val + val_xx);
E[1] = alpha * val_yx;
E[2] = alpha * val_zx;
}
break;
}
case beam:
{
// T_10 mode
if (dim == 3)
{
real_t k10 = sqrt(k * k - real_t(M_PI * M_PI));
E[1] = -zi * k / (real_t) M_PI *
sin((real_t) M_PI*x(2))*exp(zi * k10 * x(0));
}
else if (dim == 2)
{
E[1] = -zi * k / (real_t) M_PI * exp(zi * k * x(0));
}
break;
}
default:
break;
}
}
void E_exact_Re(const Vector &x, Vector &E)
{
vector<complex<real_t>> Eval(E.Size());
maxwell_solution(x, Eval);
for (int i = 0; i < dim; ++i)
{
E[i] = Eval[i].real();
}
}
void E_exact_Im(const Vector &x, Vector &E)
{
vector<complex<real_t>> Eval(E.Size());
maxwell_solution(x, Eval);
for (int i = 0; i < dim; ++i)
{
E[i] = Eval[i].imag();
}
}
void E_bdr_data_Re(const Vector &x, Vector &E)
{
E = 0.0;
bool in_pml = false;
for (int i = 0; i < dim; ++i)
{
// check if in PML
if (x(i) - comp_domain_bdr(i, 0) < 0_r ||
x(i) - comp_domain_bdr(i, 1) > 0_r)
{
in_pml = true;
break;
}
}
if (!in_pml)
{
vector<complex<real_t>> Eval(E.Size());
maxwell_solution(x, Eval);
for (int i = 0; i < dim; ++i)
{
E[i] = Eval[i].real();
}
}
}
// Define bdr_data solution
void E_bdr_data_Im(const Vector &x, Vector &E)
{
E = 0.0;
bool in_pml = false;
for (int i = 0; i < dim; ++i)
{
// check if in PML
if (x(i) - comp_domain_bdr(i, 0) < 0_r ||
x(i) - comp_domain_bdr(i, 1) > 0_r)
{
in_pml = true;
break;
}
}
if (!in_pml)
{
vector<complex<real_t>> Eval(E.Size());
maxwell_solution(x, Eval);
for (int i = 0; i < dim; ++i)
{
E[i] = Eval[i].imag();
}
}
}
void detJ_JT_J_inv_Re(const Vector &x, PML * pml, Vector &D)
{
vector<complex<real_t>> dxs(dim);
complex<real_t> det(1.0, 0.0);
pml->StretchFunction(x, dxs);
for (int i = 0; i < dim; ++i)
{
det *= dxs[i];
}
for (int i = 0; i < dim; ++i)
{
D(i) = (det / pow2(dxs[i])).real();
}
}
void detJ_JT_J_inv_Im(const Vector &x, PML * pml, Vector &D)
{
vector<complex<real_t>> dxs(dim);
complex<real_t> det = 1.0;
pml->StretchFunction(x, dxs);
for (int i = 0; i < dim; ++i)
{
det *= dxs[i];
}
for (int i = 0; i < dim; ++i)
{
D(i) = (det / pow2(dxs[i])).imag();
}
}
void detJ_JT_J_inv_abs(const Vector &x, PML * pml, Vector &D)
{
vector<complex<real_t>> dxs(dim);
complex<real_t> det = 1.0;
pml->StretchFunction(x, dxs);
for (int i = 0; i < dim; ++i)
{
det *= dxs[i];
}
for (int i = 0; i < dim; ++i)
{
D(i) = abs(det / pow2(dxs[i]));
}
}
void detJ_inv_JT_J_Re(const Vector &x, PML * pml, Vector &D)
{
vector<complex<real_t>> dxs(dim);
complex<real_t> det(1.0, 0.0);
pml->StretchFunction(x, dxs);
for (int i = 0; i < dim; ++i)
{
det *= dxs[i];
}
// in the 2D case the coefficient is scalar 1/det(J)
if (dim == 2)
{
D = (1_r / det).real();
}
else
{
for (int i = 0; i < dim; ++i)
{
D(i) = (pow2(dxs[i]) / det).real();
}
}
}
void detJ_inv_JT_J_Im(const Vector &x, PML * pml, Vector &D)
{
vector<complex<real_t>> dxs(dim);
complex<real_t> det = 1.0;
pml->StretchFunction(x, dxs);
for (int i = 0; i < dim; ++i)
{
det *= dxs[i];
}
if (dim == 2)
{
D = (1_r / det).imag();
}
else
{
for (int i = 0; i < dim; ++i)
{
D(i) = (pow2(dxs[i]) / det).imag();
}
}
}
void detJ_inv_JT_J_abs(const Vector &x, PML * pml, Vector &D)
{
vector<complex<real_t>> dxs(dim);
complex<real_t> det = 1.0;
pml->StretchFunction(x, dxs);
for (int i = 0; i < dim; ++i)
{
det *= dxs[i];
}
if (dim == 2)
{
D = abs(1_r / det);
}
else
{
for (int i = 0; i < dim; ++i)
{
D(i) = abs(pow2(dxs[i]) / det);
}
}
}
PML::PML(Mesh *mesh_, Array2D<real_t> length_)
: mesh(mesh_), length(length_)
{
dim = mesh->Dimension();
SetBoundaries();
}
void PML::SetBoundaries()
{
comp_dom_bdr.SetSize(dim, 2);
dom_bdr.SetSize(dim, 2);
Vector pmin, pmax;
mesh->GetBoundingBox(pmin, pmax);
for (int i = 0; i < dim; i++)
{
dom_bdr(i, 0) = pmin(i);
dom_bdr(i, 1) = pmax(i);
comp_dom_bdr(i, 0) = dom_bdr(i, 0) + length(i, 0);
comp_dom_bdr(i, 1) = dom_bdr(i, 1) - length(i, 1);
}
}
void PML::SetAttributes(Mesh *mesh_)
{
// Initialize bdr attributes
for (int i = 0; i < mesh_->GetNBE(); ++i)
{
mesh_->GetBdrElement(i)->SetAttribute(i+1);
}
int nrelem = mesh_->GetNE();
elems.SetSize(nrelem);
// Loop through the elements and identify which of them are in the PML
for (int i = 0; i < nrelem; ++i)
{
elems[i] = 1;
bool in_pml = false;
Element *el = mesh_->GetElement(i);
Array<int> vertices;
// Initialize attribute
el->SetAttribute(1);
el->GetVertices(vertices);
int nrvert = vertices.Size();
// Check if any vertex is in the PML
for (int iv = 0; iv < nrvert; ++iv)
{
int vert_idx = vertices[iv];
real_t *coords = mesh_->GetVertex(vert_idx);
for (int comp = 0; comp < dim; ++comp)
{
if (coords[comp] > comp_dom_bdr(comp, 1) ||
coords[comp] < comp_dom_bdr(comp, 0))
{
in_pml = true;
break;
}
}
}
if (in_pml)
{
elems[i] = 0;
el->SetAttribute(2);