-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
30 lines (21 loc) · 1005 Bytes
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from keras.models import Model, Sequential
from keras.layers import Conv2D, Dense, Activation, Flatten, BatchNormalization, Dropout
from keras import optimizers
def baseline_nvidia_model(height, width, channels):
model = Sequential()
model.add((BatchNormalization(epsilon=0.001, axis=1, input_shape=(height, width, channels))))
model.add(Conv2D(24, (5,5), strides=(2,2), activation='relu'))
model.add(Conv2D(36, (5,5), strides=(2,2), activation='relu'))
model.add(Conv2D(48, (5,5), strides=(2,2), activation='relu'))
model.add(Conv2D(64, (3,3), strides=(1,1), activation='relu'))
model.add(Flatten())
model.add(Dropout(0.8))
model.add(Dense(100, activation='relu'))
model.add(Dropout(0.7))
model.add(Dense(50, activation='relu'))
model.add(Dropout(0.7))
model.add(Dense(10, activation='relu'))
model.add(Dense(1, activation='linear'))
model.compile(optimizer=optimizers.Adam(lr=0.0001), loss='mse')
model.summary()
return model