-
Notifications
You must be signed in to change notification settings - Fork 2
/
NAC_unstructured_prune.py
130 lines (114 loc) · 4.93 KB
/
NAC_unstructured_prune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
import torch.nn as nn
import torch.nn.utils.prune as prune
from data.BraggnnDataset import setup_data_loaders
from utils.utils import *
class NAC(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1)
self.conv2 = nn.Conv2d(32, 4, kernel_size=1, stride=1)
self.act1 = nn.ReLU()
self.conv3 = nn.Conv2d(4, 32, kernel_size=1, stride=1)
self.norm1 = nn.BatchNorm2d(32)
self.act2 = nn.LeakyReLU()
self.conv4 = nn.Conv2d(32, 4, kernel_size=1, stride=1)
self.norm2 = nn.BatchNorm2d(4)
self.act3 = nn.LeakyReLU()
self.conv5 = nn.Conv2d(4, 32, kernel_size=3, stride=1)
self.norm3 = nn.BatchNorm2d(32) # nn.LayerNorm((32, 7, 7))
self.act4 = nn.LeakyReLU()
self.conv6 = nn.Conv2d(32, 8, kernel_size=3, stride=1)
self.norm4 = nn.BatchNorm2d(8) # nn.LayerNorm((8, 5, 5))
self.act5 = nn.LeakyReLU()
self.conv7 = nn.Conv2d(8, 64, kernel_size=3, stride=1)
self.flatten = nn.Flatten(1)
self.fc1 = nn.Linear(576, 8)
self.norm5 = nn.BatchNorm1d(8) # nn.LayerNorm((8))
self.act6 = nn.ReLU()
self.fc2 = nn.Linear(8, 4)
self.act7 = nn.LeakyReLU()
self.fc3 = nn.Linear(4, 4)
self.norm6 = nn.BatchNorm1d(4) # nn.LayerNorm((4))
self.act8 = nn.LeakyReLU()
self.fc4 = nn.Linear(4, 2)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.act1(x)
x = self.conv3(x)
x = self.norm1(x)
x = self.act2(x)
x = self.conv4(x)
x = self.norm2(x)
x = self.act3(x)
x = self.conv5(x)
x = self.norm3(x)
x = self.act4(x)
x = self.conv6(x)
x = self.norm4(x)
x = self.act5(x)
x = self.conv7(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.norm5(x)
x = self.act6(x)
x = self.fc2(x)
x = self.act7(x)
x = self.fc3(x)
x = self.norm6(x)
x = self.act8(x)
x = self.fc4(x)
return x
# Helper function for pruning
def get_parameters_to_prune(model, bias=False):
parameters_to_prune = []
for name, module in model.named_modules():
if isinstance(module, torch.nn.Conv2d) or isinstance(module, torch.nn.Linear):
parameters_to_prune.append((module, "weight"))
if bias and module.bias != None:
parameters_to_prune.append((module, "bias"))
return tuple(parameters_to_prune)
def get_sparsities(model):
sparsities = []
zeros, total = 0, 0
for name, module in model.named_modules():
if isinstance(module, torch.nn.Conv2d) or isinstance(module, torch.nn.Linear):
layer_sparsity = torch.sum(module.weight_mask == 0).float() / module.weight_mask.numel()
zeros += torch.sum(module.weight_mask == 0).float()
total += module.weight_mask.numel()
sparsities.append(layer_sparsity)
print("Overall sparsity: ", zeros / total)
return tuple(sparsities)
if __name__ == "__main__":
device = torch.device("cuda:4")
batch_size = 1024
train_loader, val_loader, test_loader = setup_data_loaders(
batch_size, IMG_SIZE=11, aug=1, num_workers=4, pin_memory=False, prefetch_factor=2
)
print("Loaded Dataset...")
model = NAC().to(device)
prune.global_unstructured(get_parameters_to_prune(model, bias=False), pruning_method=prune.L1Unstructured, amount=0)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.RMSprop(model.parameters(), lr=0.00015, weight_decay=2.2e-9) # chagned lr from .0015
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=300)
print("Starting run...")
for prune_iter in range(0, 7):
print("Starting prune iter: ", prune_iter)
validation_loss = train(model, optimizer, scheduler, criterion, train_loader, val_loader, device, 300)
# val_mean_dist = get_mean_dist(model, val_loader, device, psz=11)
test_mean_dist = get_mean_dist(model, test_loader, device, psz=11)
print("Test Mean Distance: ", test_mean_dist)
sparsities = get_sparsities(model)
print("Sparsity: ", sparsities)
torch.save(model.state_dict(), "models/pruned_unquantized_LeakyReLU_NAC_iter" + str(prune_iter) + ".pth")
test_model = NAC().to(device)
test_model.load_state_dict(torch.load("models/pruned_unquantized_LeakyReLU_NAC_iter" + str(prune_iter) + ".pth"))
test_mean_dist = get_mean_dist(model, test_loader, device, psz=11)
print("Test Mean Distance: ", test_mean_dist)
prune.global_unstructured(
get_parameters_to_prune(model, bias=False), pruning_method=prune.L1Unstructured, amount=0.2
)
for module, name in get_parameters_to_prune(model):
prune.remove(module, name)
torch.save(model.state_dict(), "models/pruned_unquantized_LeakyReLU_NAC.pth")