-
Notifications
You must be signed in to change notification settings - Fork 2
/
compress_deepsets.py
129 lines (96 loc) · 4.5 KB
/
compress_deepsets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
import torch.nn as nn
import torch.nn.utils.prune as prune
from data import DeepsetsDataset
from models.blocks import *
from utils.processor import evaluate_Deepsets, get_acc
bit_width = 32
aggregator = lambda x: torch.mean(x, dim=2)
phi = QAT_ConvPhi(
widths=[3, 32, 32, 32], acts=[nn.ReLU(), nn.ReLU(), nn.ReLU()], norms=[None, None, None], bit_width=bit_width
)
rho = QAT_Rho(widths=[32, 16, 5], acts=[nn.ReLU(), None], norms=[None, None], bit_width=bit_width)
deepsets_model = DeepSetsArchitecture(phi, rho, aggregator)
large_phi = QAT_ConvPhi(widths=[3, 32, 32], acts=[nn.ReLU(), nn.ReLU()], norms=["batch", "batch"], bit_width=bit_width)
large_rho = QAT_Rho(
widths=[32, 32, 64, 5],
acts=[nn.ReLU(), nn.ReLU(), nn.LeakyReLU(negative_slope=0.01)],
norms=["batch", None, "batch"],
bit_width=bit_width,
)
large_model = DeepSetsArchitecture(large_phi, large_rho, aggregator)
medium_phi = QAT_ConvPhi(widths=[3, 32, 16], acts=[nn.ReLU(), nn.ReLU()], norms=["batch", "batch"], bit_width=bit_width)
medium_rho = QAT_Rho(
widths=[16, 64, 8, 32, 5],
acts=[nn.ReLU(), nn.LeakyReLU(negative_slope=0.01), nn.ReLU(), nn.ReLU()],
norms=["batch", "batch", "batch", "batch"],
bit_width=bit_width,
)
medium_model = DeepSetsArchitecture(medium_phi, medium_rho, aggregator)
small_phi = QAT_ConvPhi(
widths=[3, 8, 8], acts=[nn.LeakyReLU(negative_slope=0.01), nn.ReLU()], norms=["batch", None], bit_width=bit_width
)
small_rho = QAT_Rho(
widths=[8, 16, 16, 5],
acts=[nn.LeakyReLU(negative_slope=0.01), nn.ReLU(), nn.LeakyReLU(negative_slope=0.01)],
norms=["batch", "batch", None],
bit_width=bit_width,
)
small_model = DeepSetsArchitecture(small_phi, small_rho, aggregator)
tiny_phi = QAT_ConvPhi(widths=[3, 16], acts=[nn.ReLU()], norms=["batch"], bit_width=bit_width)
tiny_rho = QAT_Rho(
widths=[16, 8, 8, 4, 5],
acts=[nn.ReLU(), None, nn.ReLU(), nn.ReLU()],
norms=["batch", None, None, "batch"],
bit_width=bit_width,
)
tiny_model = DeepSetsArchitecture(tiny_phi, tiny_rho, aggregator)
adjusted_tiny_rho = QAT_Rho(
widths=[16, 8, 4, 5], acts=[nn.ReLU(), nn.ReLU(), nn.ReLU()], norms=["batch", None, "batch"], bit_width=bit_width
)
adjusted_tiny_model = DeepSetsArchitecture(tiny_phi, adjusted_tiny_rho, aggregator)
def get_parameters_to_prune(model, bias=False):
parameters_to_prune = []
for name, module in model.named_modules():
if isinstance(module, torch.nn.Conv2d) or isinstance(module, torch.nn.Linear):
parameters_to_prune.append((module, "weight"))
if bias and module.bias != None:
parameters_to_prune.append((module, "bias"))
return tuple(parameters_to_prune)
def get_sparsities(model):
sparsities = []
for name, module in model.named_modules():
if isinstance(module, torch.nn.Conv2d) or isinstance(module, torch.nn.Linear):
layer_sparsity = torch.sum(module.weight_mask == 0).float() / module.weight_mask.numel()
sparsities.append(layer_sparsity)
return tuple(sparsities)
if __name__ == "__main__":
# #TODO: Change to fit anyones device
if torch.cuda.is_available():
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
batch_size = 4096
num_workers = 8
train_loader, val_loader, test_loader = DeepsetsDataset.setup_data_loaders(
"jet_images_c8_minpt2_ptetaphi_robust_fast", batch_size, num_workers, prefetch_factor=True, pin_memory=True
)
print("Loaded Dataset...")
for model, model_name in [
(large_model, "Large"),
(medium_model, "Medium"),
(small_model, "Small"),
(tiny_model, "Tiny"),
]:
prune.global_unstructured(get_parameters_to_prune(model), pruning_method=prune.L1Unstructured, amount=0)
for prune_iter in range(0, 20):
val_accuracy, inference_time, validation_loss, param_count = evaluate_Deepsets(
model, train_loader, val_loader, device, num_epochs=100
)
test_accuracy = get_acc(model, test_loader, device)
sparsities = get_sparsities(model)
with open("./NAC_Compress.txt", "a") as file:
file.write(
f"Deepsets {model_name} Model {bit_width}-Bit QAT Model Prune Iter: {prune_iter}, Test Accuracy: {test_accuracy}, Val Accuracy: {val_accuracy}, Val Loss: {validation_loss}, Sparsities: {sparsities}\n"
)
prune.global_unstructured(get_parameters_to_prune(model), pruning_method=prune.L1Unstructured, amount=0.2)