|
| 1 | +from collections import deque |
| 2 | + |
| 3 | +import pandas as pd |
| 4 | +import numpy as np |
| 5 | +from typing import List, Callable |
| 6 | + |
| 7 | +from lib.env.reward.BaseRewardStrategy import BaseRewardStrategy |
| 8 | + |
| 9 | + |
| 10 | +class WeightedUnrealisedProfit(BaseRewardStrategy): |
| 11 | + def __init__(self, **kwargs): |
| 12 | + self.decay_rate = kwargs.get('decay_rate', 1e-2) |
| 13 | + self.decay_denominator = np.exp(-1 * self.decay_rate) |
| 14 | + |
| 15 | + self.reset_reward() |
| 16 | + |
| 17 | + def reset_reward(self): |
| 18 | + self.rewards = deque(np.zeros(1, dtype=float)) |
| 19 | + self.sum = 0.0 |
| 20 | + |
| 21 | + def calc_reward(self, reward): |
| 22 | + self.sum = self.sum - self.decay_denominator * self.rewards.popleft() |
| 23 | + self.sum = self.sum * self.decay_denominator |
| 24 | + self.sum = self.sum + reward |
| 25 | + |
| 26 | + self.rewards.append(reward) |
| 27 | + |
| 28 | + return self.sum / self.decay_denominator |
| 29 | + |
| 30 | + def get_reward(self, |
| 31 | + current_step: int, |
| 32 | + current_price: Callable[[str], float], |
| 33 | + observations: pd.DataFrame, |
| 34 | + account_history: pd.DataFrame, |
| 35 | + net_worths: List[float]) -> float: |
| 36 | + if account_history['asset_sold'].values[-1] > 0: |
| 37 | + reward = self.calc_reward(account_history['sale_revenue'].values[-1]) |
| 38 | + else: |
| 39 | + reward = self.calc_reward(account_history['asset_held'].values[-1] * current_price) |
| 40 | + |
| 41 | + return reward |
0 commit comments