forked from su2code/SU2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config_template.cfg
1458 lines (1421 loc) · 54.5 KB
/
config_template.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% SU2 configuration file %
% Case description: _________________________________________________________ %
% Author: ___________________________________________________________________ %
% Institution: ______________________________________________________________ %
% Date: __________ %
% File Version 7.0.0 "Blackbird" %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Solver type (EULER, NAVIER_STOKES, RANS,
% INC_EULER, INC_NAVIER_STOKES, INC_RANS
% FEM_EULER, FEM_NAVIER_STOKES, FEM_RANS, FEM_LES,
% HEAT_EQUATION_FVM, ELASTICITY)
SOLVER= EULER
%
% Specify turbulence model (NONE, SA, SA_NEG, SST, SA_E, SA_COMP, SA_E_COMP, SST_SUST)
KIND_TURB_MODEL= NONE
%
% Specify subgrid scale model(NONE, IMPLICIT_LES, SMAGORINSKY, WALE, VREMAN)
KIND_SGS_MODEL= NONE
%
% Specify the verification solution(NO_VERIFICATION_SOLUTION, INVISCID_VORTEX,
% RINGLEB, NS_UNIT_QUAD, TAYLOR_GREEN_VORTEX,
% MMS_NS_UNIT_QUAD, MMS_NS_UNIT_QUAD_WALL_BC,
% MMS_NS_TWO_HALF_CIRCLES, MMS_NS_TWO_HALF_SPHERES,
% MMS_INC_EULER, MMS_INC_NS, INC_TAYLOR_GREEN_VORTEX,
% USER_DEFINED_SOLUTION)
KIND_VERIFICATION_SOLUTION= NO_VERIFICATION_SOLUTION
%
% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT, DISCRETE_ADJOINT)
MATH_PROBLEM= DIRECT
%
% Axisymmetric simulation, only compressible flows (NO, YES)
AXISYMMETRIC= NO
%
% Restart solution (NO, YES)
RESTART_SOL= NO
%
% Discard the data storaged in the solution and geometry files
% e.g. AOA, dCL/dAoA, dCD/dCL, iter, etc.
% Note that AoA in the solution and geometry files is critical
% to aero design using AoA as a variable. (NO, YES)
DISCARD_INFILES= NO
%
% System of measurements (SI, US)
% International system of units (SI): ( meters, kilograms, Kelvins,
% Newtons = kg m/s^2, Pascals = N/m^2,
% Density = kg/m^3, Speed = m/s,
% Equiv. Area = m^2 )
% United States customary units (US): ( inches, slug, Rankines, lbf = slug ft/s^2,
% psf = lbf/ft^2, Density = slug/ft^3,
% Speed = ft/s, Equiv. Area = ft^2 )
SYSTEM_MEASUREMENTS= SI
%
%
% ------------------------------- SOLVER CONTROL ------------------------------%
%
% Maximum number of inner iterations
INNER_ITER= 9999
%
% Maximum number of outer iterations (only for multizone problems)
OUTER_ITER= 1
%
% Maximum number of time iterations
TIME_ITER= 1
%
% Convergence field
CONV_FIELD= DRAG
%
% Min value of the residual (log10 of the residual)
CONV_RESIDUAL_MINVAL= -8
%
% Start convergence criteria at iteration number
CONV_STARTITER= 10
%
% Number of elements to apply the criteria
CONV_CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CONV_CAUCHY_EPS= 1E-10
%
% Iteration number to begin unsteady restarts
RESTART_ITER= 0
%
% ------------------------- TIME-DEPENDENT SIMULATION -------------------------------%
%
% Time domain simulation
TIME_DOMAIN= NO
%
% Unsteady simulation (NO, TIME_STEPPING, DUAL_TIME_STEPPING-1ST_ORDER,
% DUAL_TIME_STEPPING-2ND_ORDER, HARMONIC_BALANCE)
TIME_MARCHING= NO
%
% Time Step for dual time stepping simulations (s) -- Only used when UNST_CFL_NUMBER = 0.0
% For the DG-FEM solver it is used as a synchronization time when UNST_CFL_NUMBER != 0.0
TIME_STEP= 0.0
%
% Total Physical Time for dual time stepping simulations (s)
MAX_TIME= 50.0
%
% Unsteady Courant-Friedrichs-Lewy number of the finest grid
UNST_CFL_NUMBER= 0.0
%
% ------------------------------- DES Parameters ------------------------------%
%
% Specify Hybrid RANS/LES model (SA_DES, SA_DDES, SA_ZDES, SA_EDDES)
HYBRID_RANSLES= SA_DDES
%
% DES Constant (0.65)
DES_CONST= 0.65
% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------%
%
% Mach number (non-dimensional, based on the free-stream values)
MACH_NUMBER= 0.8
%
% Angle of attack (degrees, only for compressible flows)
AOA= 1.25
%
% Side-slip angle (degrees, only for compressible flows)
SIDESLIP_ANGLE= 0.0
%
% Init option to choose between Reynolds (default) or thermodynamics quantities
% for initializing the solution (REYNOLDS, TD_CONDITIONS)
INIT_OPTION= REYNOLDS
%
% Free-stream option to choose between density and temperature (default) for
% initializing the solution (TEMPERATURE_FS, DENSITY_FS)
FREESTREAM_OPTION= TEMPERATURE_FS
%
% Free-stream pressure (101325.0 N/m^2, 2116.216 psf by default)
FREESTREAM_PRESSURE= 101325.0
%
% Free-stream temperature (288.15 K, 518.67 R by default)
FREESTREAM_TEMPERATURE= 288.15
%
% Reynolds number (non-dimensional, based on the free-stream values)
REYNOLDS_NUMBER= 6.5E6
%
% Reynolds length (1 m, 1 inch by default)
REYNOLDS_LENGTH= 1.0
%
% Free-stream density (1.2886 Kg/m^3, 0.0025 slug/ft^3 by default)
FREESTREAM_DENSITY= 1.2886
%
% Free-stream velocity (1.0 m/s, 1.0 ft/s by default)
FREESTREAM_VELOCITY= ( 1.0, 0.00, 0.00 )
%
% Free-stream viscosity (1.853E-5 N s/m^2, 3.87E-7 lbf s/ft^2 by default)
FREESTREAM_VISCOSITY= 1.853E-5
%
% Compressible flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE,
% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE)
REF_DIMENSIONALIZATION= DIMENSIONAL
% ---------------- INCOMPRESSIBLE FLOW CONDITION DEFINITION -------------------%
%
% Density model within the incompressible flow solver.
% Options are CONSTANT (default), BOUSSINESQ, or VARIABLE. If VARIABLE,
% an appropriate fluid model must be selected.
INC_DENSITY_MODEL= CONSTANT
%
% Solve the energy equation in the incompressible flow solver
INC_ENERGY_EQUATION = NO
%
% Initial density for incompressible flows
% (1.2886 kg/m^3 by default (air), 998.2 Kg/m^3 (water))
INC_DENSITY_INIT= 1.2886
%
% Initial velocity for incompressible flows (1.0,0,0 m/s by default)
INC_VELOCITY_INIT= ( 1.0, 0.0, 0.0 )
%
% Initial temperature for incompressible flows that include the
% energy equation (288.15 K by default). Value is ignored if
% INC_ENERGY_EQUATION is false.
INC_TEMPERATURE_INIT= 288.15
%
% Non-dimensionalization scheme for incompressible flows. Options are
% INITIAL_VALUES (default), REFERENCE_VALUES, or DIMENSIONAL.
% INC_*_REF values are ignored unless REFERENCE_VALUES is chosen.
INC_NONDIM= INITIAL_VALUES
%
% Reference density for incompressible flows (1.0 kg/m^3 by default)
INC_DENSITY_REF= 1.0
%
% Reference velocity for incompressible flows (1.0 m/s by default)
INC_VELOCITY_REF= 1.0
%
% Reference temperature for incompressible flows that include the
% energy equation (1.0 K by default)
INC_TEMPERATURE_REF = 1.0
%
% List of inlet types for incompressible flows. List length must
% match number of inlet markers. Options: VELOCITY_INLET, PRESSURE_INLET.
INC_INLET_TYPE= VELOCITY_INLET
%
% Damping coefficient for iterative updates at pressure inlets. (0.1 by default)
INC_INLET_DAMPING= 0.1
%
% List of outlet types for incompressible flows. List length must
% match number of outlet markers. Options: PRESSURE_OUTLET, MASS_FLOW_OUTLET
INC_OUTLET_TYPE= PRESSURE_OUTLET
%
% Damping coefficient for iterative updates at mass flow outlets. (0.1 by default)
INC_OUTLET_DAMPING= 0.1
% ----------------------------- CL DRIVER DEFINITION ---------------------------%
%
% Activate fixed lift mode (specify a CL instead of AoA, NO/YES)
FIXED_CL_MODE= NO
%
% Target coefficient of lift for fixed lift mode (0.80 by default)
TARGET_CL= 0.80
%
% Estimation of dCL/dAlpha (0.2 per degree by default)
DCL_DALPHA= 0.2
%
% Maximum number of iterations between AoA updates
UPDATE_AOA_ITER_LIMIT= 100
%
% Number of iterations to evaluate dCL_dAlpha by using finite differences (500 by default)
ITER_DCL_DALPHA= 500
% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation (m or in)
REF_ORIGIN_MOMENT_X = 0.25
REF_ORIGIN_MOMENT_Y = 0.00
REF_ORIGIN_MOMENT_Z = 0.00
%
% Reference length for moment non-dimensional coefficients (m or in)
REF_LENGTH= 1.0
%
% Reference area for non-dimensional force coefficients (0 implies automatic
% calculation) (m^2 or in^2)
REF_AREA= 1.0
%
% Aircraft semi-span (0 implies automatic calculation) (m or in)
SEMI_SPAN= 0.0
% ---- IDEAL GAS, POLYTROPIC, VAN DER WAALS AND PENG ROBINSON CONSTANTS -------%
%
% Fluid model (STANDARD_AIR, IDEAL_GAS, VW_GAS, PR_GAS,
% CONSTANT_DENSITY, INC_IDEAL_GAS, INC_IDEAL_GAS_POLY)
FLUID_MODEL= STANDARD_AIR
%
% Ratio of specific heats (1.4 default and the value is hardcoded
% for the model STANDARD_AIR, compressible only)
GAMMA_VALUE= 1.4
%
% Specific gas constant (287.058 J/kg*K default and this value is hardcoded
% for the model STANDARD_AIR, compressible only)
GAS_CONSTANT= 287.058
%
% Critical Temperature (131.00 K by default)
CRITICAL_TEMPERATURE= 131.00
%
% Critical Pressure (3588550.0 N/m^2 by default)
CRITICAL_PRESSURE= 3588550.0
%
% Acentri factor (0.035 (air))
ACENTRIC_FACTOR= 0.035
%
% Specific heat at constant pressure, Cp (1004.703 J/kg*K (air)).
% Incompressible fluids with energy eqn. only (CONSTANT_DENSITY, INC_IDEAL_GAS).
SPECIFIC_HEAT_CP= 1004.703
%
% Thermal expansion coefficient (0.00347 K^-1 (air))
% Used with Boussinesq approx. (incompressible, BOUSSINESQ density model only)
THERMAL_EXPANSION_COEFF= 0.00347
%
% Molecular weight for an incompressible ideal gas (28.96 g/mol (air) default)
MOLECULAR_WEIGHT= 28.96
%
% Temperature polynomial coefficients (up to quartic) for specific heat Cp.
% Format -> Cp(T) : b0 + b1*T + b2*T^2 + b3*T^3 + b4*T^4
CP_POLYCOEFFS= (0.0, 0.0, 0.0, 0.0, 0.0)
% --------------------------- VISCOSITY MODEL ---------------------------------%
%
% Viscosity model (SUTHERLAND, CONSTANT_VISCOSITY, POLYNOMIAL_VISCOSITY).
VISCOSITY_MODEL= SUTHERLAND
%
% Molecular Viscosity that would be constant (1.716E-5 by default)
MU_CONSTANT= 1.716E-5
%
% Sutherland Viscosity Ref (1.716E-5 default value for AIR SI)
MU_REF= 1.716E-5
%
% Sutherland Temperature Ref (273.15 K default value for AIR SI)
MU_T_REF= 273.15
%
% Sutherland constant (110.4 default value for AIR SI)
SUTHERLAND_CONSTANT= 110.4
%
% Temperature polynomial coefficients (up to quartic) for viscosity.
% Format -> Mu(T) : b0 + b1*T + b2*T^2 + b3*T^3 + b4*T^4
MU_POLYCOEFFS= (0.0, 0.0, 0.0, 0.0, 0.0)
% --------------------------- THERMAL CONDUCTIVITY MODEL ----------------------%
%
% Laminar Conductivity model (CONSTANT_CONDUCTIVITY, CONSTANT_PRANDTL,
% POLYNOMIAL_CONDUCTIVITY).
CONDUCTIVITY_MODEL= CONSTANT_PRANDTL
%
% Molecular Thermal Conductivity that would be constant (0.0257 by default)
KT_CONSTANT= 0.0257
%
% Laminar Prandtl number (0.72 (air), only for CONSTANT_PRANDTL)
PRANDTL_LAM= 0.72
%
% Temperature polynomial coefficients (up to quartic) for conductivity.
% Format -> Kt(T) : b0 + b1*T + b2*T^2 + b3*T^3 + b4*T^4
KT_POLYCOEFFS= (0.0, 0.0, 0.0, 0.0, 0.0)
%
% Definition of the turbulent thermal conductivity model for RANS
% (CONSTANT_PRANDTL_TURB by default, NONE).
TURBULENT_CONDUCTIVITY_MODEL= CONSTANT_PRANDTL_TURB
%
% Turbulent Prandtl number (0.9 (air) by default)
PRANDTL_TURB= 0.90
% ----------------------- DYNAMIC MESH DEFINITION -----------------------------%
%
% Type of dynamic mesh (NONE, RIGID_MOTION, ROTATING_FRAME,
% STEADY_TRANSLATION,
% ELASTICITY, GUST)
GRID_MOVEMENT= NONE
%
% Motion mach number (non-dimensional). Used for initializing a viscous flow
% with the Reynolds number and for computing force coeffs. with dynamic meshes.
MACH_MOTION= 0.8
%
% Coordinates of the motion origin
MOTION_ORIGIN= 0.25 0.0 0.0
%
% Angular velocity vector (rad/s) about the motion origin
ROTATION_RATE = 0.0 0.0 0.0
%
% Pitching angular freq. (rad/s) about the motion origin
PITCHING_OMEGA= 0.0 0.0 0.0
%
% Pitching amplitude (degrees) about the motion origin
PITCHING_AMPL= 0.0 0.0 0.0
%
% Pitching phase offset (degrees) about the motion origin
PITCHING_PHASE= 0.0 0.0 0.0
%
% Translational velocity (m/s or ft/s) in the x, y, & z directions
TRANSLATION_RATE = 0.0 0.0 0.0
%
% Plunging angular freq. (rad/s) in x, y, & z directions
PLUNGING_OMEGA= 0.0 0.0 0.0
%
% Plunging amplitude (m or ft) in x, y, & z directions
PLUNGING_AMPL= 0.0 0.0 0.0
%
% Type of dynamic surface movement (NONE, DEFORMING,
% MOVING_WALL, FLUID_STRUCTURE, FLUID_STRUCTURE_STATIC,
% AEROELASTIC, EXTERNAL, EXTERNAL_ROTATION,
% AEROELASTIC_RIGID_MOTION)
SURFACE_MOVEMENT= NONE
%
% Moving wall boundary marker(s) (NONE = no marker, ignored for RIGID_MOTION)
MARKER_MOVING= ( NONE )
%
% Coordinates of the motion origin
SURFACE_MOTION_ORIGIN= 0.25
%
% Angular velocity vector (rad/s) about the motion origin
SURFACE_ROTATION_RATE = 0.0 0.0 0.0
%
% Pitching angular freq. (rad/s) about the motion origin
SURFACE_PITCHING_OMEGA= 0.0 0.0 0.0
%
% Pitching amplitude (degrees) about the motion origin
SURFACE_PITCHING_AMPL= 0.0 0.0 0.0
%
% Pitching phase offset (degrees) about the motion origin
SURFACE_PITCHING_PHASE= 0.0 0.0 0.0
%
% Translational velocity (m/s or ft/s) in the x, y, & z directions
SURFACE_TRANSLATION_RATE = 0.0 0.0 0.0
%
% Plunging angular freq. (rad/s) in x, y, & z directions
SURFACE_PLUNGING_OMEGA= 0.0 0.0 0.0
%
% Plunging amplitude (m or ft) in x, y, & z directions
SURFACE_PLUNGING_AMPL= 0.0 0.0 0.0
%
% Move Motion Origin for marker moving (1 or 0)
MOVE_MOTION_ORIGIN = 0
%
% ------------------------- BUFFET SENSOR DEFINITION --------------------------%
%
% Compute the Kenway-Martins separation sensor for buffet-onset detection
% If BUFFET objective/constraint is specified, the objective is given by
% the integrated sensor normalized by reference area
%
% See doi: 10.2514/1.J055172
%
% Evaluate buffet sensor on Navier-Stokes markers (NO, YES)
BUFFET_MONITORING= NO
%
% Sharpness coefficient for the buffet sensor Heaviside function
BUFFET_K= 10.0
%
% Offset parameter for the buffet sensor Heaviside function
BUFFET_LAMBDA= 0.0
% -------------- AEROELASTIC SIMULATION (Typical Section Model) ---------------%
%
% Activated by GRID_MOVEMENT_KIND option
%
% The flutter speed index (modifies the freestream condition in the solver)
FLUTTER_SPEED_INDEX = 0.6
%
% Natural frequency of the spring in the plunging direction (rad/s)
PLUNGE_NATURAL_FREQUENCY = 100
%
% Natural frequency of the spring in the pitching direction (rad/s)
PITCH_NATURAL_FREQUENCY = 100
%
% The airfoil mass ratio
AIRFOIL_MASS_RATIO = 60
%
% Distance in semichords by which the center of gravity lies behind
% the elastic axis
CG_LOCATION = 1.8
%
% The radius of gyration squared (expressed in semichords)
% of the typical section about the elastic axis
RADIUS_GYRATION_SQUARED = 3.48
%
% Solve the aeroelastic equations every given number of internal iterations
AEROELASTIC_ITER = 3
% --------------------------- GUST SIMULATION ---------------------------------%
%
% Apply a wind gust (NO, YES)
WIND_GUST = NO
%
% Type of gust (NONE, TOP_HAT, SINE, ONE_M_COSINE, VORTEX, EOG)
GUST_TYPE = NONE
%
% Direction of the gust (X_DIR or Y_DIR)
GUST_DIR = Y_DIR
%
% Gust wavelenght (meters)
GUST_WAVELENGTH= 10.0
%
% Number of gust periods
GUST_PERIODS= 1.0
%
% Gust amplitude (m/s)
GUST_AMPL= 10.0
%
% Time at which to begin the gust (sec)
GUST_BEGIN_TIME= 0.0
%
% Location at which the gust begins (meters) */
GUST_BEGIN_LOC= 0.0
% ------------------------ SUPERSONIC SIMULATION ------------------------------%
%
% Evaluate equivalent area on the Near-Field (NO, YES)
EQUIV_AREA= NO
%
% Integration limits of the equivalent area ( xmin, xmax, Dist_NearField )
EA_INT_LIMIT= ( 1.6, 2.9, 1.0 )
%
% Equivalent area scale factor ( EA should be ~ force based objective functions )
EA_SCALE_FACTOR= 1.0
%
% Fix an azimuthal line due to misalignments of the near-field
FIX_AZIMUTHAL_LINE= 90.0
%
% Drag weight in sonic boom Objective Function (from 0.0 to 1.0)
DRAG_IN_SONICBOOM= 0.0
% -------------------------- ENGINE SIMULATION --------------------------------%
%
% Highlite area to compute MFR (1 in2 by default)
HIGHLITE_AREA= 1.0
%
% Fan polytropic efficiency (1.0 by default)
FAN_POLY_EFF= 1.0
%
% Only half engine is in the computational grid (NO, YES)
ENGINE_HALF_MODEL= NO
%
% Damping factor for the engine inflow.
DAMP_ENGINE_INFLOW= 0.95
%
% Damping factor for the engine exhaust.
DAMP_ENGINE_EXHAUST= 0.95
%
% Engine nu factor (SA model).
ENGINE_NU_FACTOR= 3.0
%
% Actuator disk jump definition using ratio or difference (DIFFERENCE, RATIO)
ACTDISK_JUMP= DIFFERENCE
%
% Number of times BC Thrust is updated in a fix Net Thrust problem (5 by default)
UPDATE_BCTHRUST= 100
%
% Initial BC Thrust guess for POWER or D-T driver (4000.0 lbf by default)
INITIAL_BCTHRUST= 4000.0
%
% Initialization with a subsonic flow around the engine.
SUBSONIC_ENGINE= NO
%
% Axis of the cylinder that defines the subsonic region (A_X, A_Y, A_Z, B_X, B_Y, B_Z, Radius)
SUBSONIC_ENGINE_CYL= ( 0.0, 0.0, 0.0, 1.0, 0.0 , 0.0, 1.0 )
%
% Flow variables that define the subsonic region (Mach, Alpha, Beta, Pressure, Temperature)
SUBSONIC_ENGINE_VALUES= ( 0.4, 0.0, 0.0, 2116.216, 518.67 )
% ------------------------- TURBOMACHINERY SIMULATION -------------------------%
%
% Specify kind of architecture for each zone (AXIAL, CENTRIPETAL, CENTRIFUGAL,
% CENTRIPETAL_AXIAL, AXIAL_CENTRIFUGAL)
TURBOMACHINERY_KIND= CENTRIPETAL CENTRIPETAL_AXIAL
%
% Specify kind of interpolation for the mixing-plane (LINEAR_INTERPOLATION,
% NEAREST_SPAN, MATCHING)
MIXINGPLANE_INTERFACE_KIND= LINEAR_INTERPOLATION
%
% Specify option for turbulent mixing-plane (YES, NO) default NO
TURBULENT_MIXINGPLANE= YES
%
% Specify ramp option for Outlet pressure (YES, NO) default NO
RAMP_OUTLET_PRESSURE= NO
%
% Parameters of the outlet pressure ramp (starting outlet pressure,
% updating-iteration-frequency, total number of iteration for the ramp)
RAMP_OUTLET_PRESSURE_COEFF= (400000.0, 10.0, 500)
%
% Specify ramp option for rotating frame (YES, NO) default NO
RAMP_ROTATING_FRAME= YES
%
% Parameters of the rotating frame ramp (starting rotational speed,
% updating-iteration-frequency, total number of iteration for the ramp)
RAMP_ROTATING_FRAME_COEFF= (0.0, 39.0, 500)
%
% Specify Kind of average process for linearizing the Navier-Stokes
% equation at inflow and outflow BCs included at the mixing-plane interface
% (ALGEBRAIC, AREA, MASSSFLUX, MIXEDOUT) default AREA
AVERAGE_PROCESS_KIND= MIXEDOUT
%
% Specify Kind of average process for computing turbomachienry performance parameters
% (ALGEBRAIC, AREA, MASSSFLUX, MIXEDOUT) default AREA
PERFORMANCE_AVERAGE_PROCESS_KIND= MIXEDOUT
%
% Parameters of the Newton method for the MIXEDOUT average algorithm
% (under relaxation factor, tollerance, max number of iterations)
MIXEDOUT_COEFF= (1.0, 1.0E-05, 15)
%
% Limit of Mach number below which the mixedout algorithm is substituted
% with a AREA average algorithm to avoid numerical issues
AVERAGE_MACH_LIMIT= 0.05
% --------------------- INVERSE DESIGN SIMULATION -----------------------------%
%
% Evaluate an inverse design problem using Cp (NO, YES)
INV_DESIGN_CP= NO
%
% Evaluate an inverse design problem using heat flux (NO, YES)
INV_DESIGN_HEATFLUX= NO
% ----------------------- BODY FORCE DEFINITION -------------------------------%
%
% Apply a body force as a source term (NO, YES)
BODY_FORCE= NO
%
% Vector of body force values (BodyForce_X, BodyForce_Y, BodyForce_Z)
BODY_FORCE_VECTOR= ( 0.0, 0.0, 0.0 )
% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
% Euler wall boundary marker(s) (NONE = no marker)
% Implementation identical to MARKER_SYM.
MARKER_EULER= ( airfoil )
%
% Navier-Stokes (no-slip), constant heat flux wall marker(s) (NONE = no marker)
% Format: ( marker name, constant heat flux (J/m^2), ... )
MARKER_HEATFLUX= ( NONE )
%
% Navier-Stokes (no-slip), isothermal wall marker(s) (NONE = no marker)
% Format: ( marker name, constant wall temperature (K), ... )
MARKER_ISOTHERMAL= ( NONE )
%
% Far-field boundary marker(s) (NONE = no marker)
MARKER_FAR= ( farfield )
%
% Symmetry boundary marker(s) (NONE = no marker)
% Implementation identical to MARKER_EULER.
MARKER_SYM= ( NONE )
%
% Internal boundary marker(s) e.g. no boundary condition (NONE = no marker)
MARKER_INTERNAL= ( NONE )
%
% Near-Field boundary marker(s) (NONE = no marker)
MARKER_NEARFIELD= ( NONE )
%
%
% Inlet boundary type (TOTAL_CONDITIONS, MASS_FLOW)
INLET_TYPE= TOTAL_CONDITIONS
%
% Read inlet profile from a file (YES, NO) default: NO
SPECIFIED_INLET_PROFILE= NO
%
% File specifying inlet profile
INLET_FILENAME= inlet.dat
%
% Inlet boundary marker(s) with the following formats (NONE = no marker)
% Total Conditions: (inlet marker, total temp, total pressure, flow_direction_x,
% flow_direction_y, flow_direction_z, ... ) where flow_direction is
% a unit vector.
% Mass Flow: (inlet marker, density, velocity magnitude, flow_direction_x,
% flow_direction_y, flow_direction_z, ... ) where flow_direction is
% a unit vector.
% Inc. Velocity: (inlet marker, temperature, velocity magnitude, flow_direction_x,
% flow_direction_y, flow_direction_z, ... ) where flow_direction is
% a unit vector.
% Inc. Pressure: (inlet marker, temperature, total pressure, flow_direction_x,
% flow_direction_y, flow_direction_z, ... ) where flow_direction is
% a unit vector.
MARKER_INLET= ( NONE )
%
% Outlet boundary marker(s) (NONE = no marker)
% Compressible: ( outlet marker, back pressure (static thermodynamic), ... )
% Inc. Pressure: ( outlet marker, back pressure (static gauge in Pa), ... )
% Inc. Mass Flow: ( outlet marker, mass flow target (kg/s), ... )
MARKER_OUTLET= ( NONE )
%
% Actuator disk boundary type (VARIABLES_JUMP, BC_THRUST,
% DRAG_MINUS_THRUST)
ACTDISK_TYPE= VARIABLES_JUMP
%
% Actuator disk boundary marker(s) with the following formats (NONE = no marker)
% Variables Jump: ( inlet face marker, outlet face marker,
% Takeoff pressure jump (psf), Takeoff temperature jump (R), Takeoff rev/min,
% Cruise pressure jump (psf), Cruise temperature jump (R), Cruise rev/min )
% BC Thrust: ( inlet face marker, outlet face marker,
% Takeoff BC thrust (lbs), 0.0, Takeoff rev/min,
% Cruise BC thrust (lbs), 0.0, Cruise rev/min )
% Drag-Thrust: ( inlet face marker, outlet face marker,
% Takeoff Drag-Thrust (lbs), 0.0, Takeoff rev/min,
% Cruise Drag-Thrust (lbs), 0.0, Cruise rev/min )
MARKER_ACTDISK= ( NONE )
%
% Supersonic inlet boundary marker(s) (NONE = no marker)
% Format: (inlet marker, temperature, static pressure, velocity_x,
% velocity_y, velocity_z, ... ), i.e. primitive variables specified.
MARKER_SUPERSONIC_INLET= ( NONE )
%
% Supersonic outlet boundary marker(s) (NONE = no marker)
MARKER_SUPERSONIC_OUTLET= ( NONE )
%
% Periodic boundary marker(s) (NONE = no marker)
% Format: ( periodic marker, donor marker, rotation_center_x, rotation_center_y,
% rotation_center_z, rotation_angle_x-axis, rotation_angle_y-axis,
% rotation_angle_z-axis, translation_x, translation_y, translation_z, ... )
MARKER_PERIODIC= ( NONE )
%
% Engine Inflow boundary type (FAN_FACE_MACH, FAN_FACE_PRESSURE, FAN_FACE_MDOT)
ENGINE_INFLOW_TYPE= FAN_FACE_MACH
%
% Engine inflow boundary marker(s) (NONE = no marker)
% Format: (engine inflow marker, fan face Mach, ... )
MARKER_ENGINE_INFLOW= ( NONE )
%
% Engine exhaust boundary marker(s) with the following formats (NONE = no marker)
% Format: (engine exhaust marker, total nozzle temp, total nozzle pressure, ... )
MARKER_ENGINE_EXHAUST= ( NONE )
%
% Displacement boundary marker(s) (NONE = no marker)
% Format: ( displacement marker, displacement value normal to the surface, ... )
MARKER_NORMAL_DISPL= ( NONE )
%
% Pressure boundary marker(s) (NONE = no marker)
% Format: ( pressure marker )
MARKER_PRESSURE= ( NONE )
%
% Riemann boundary marker(s) (NONE = no marker)
% Format: (marker, data kind flag, list of data)
MARKER_RIEMANN= ( NONE )
%
% Shroud boundary marker(s) (NONE = no marker)
% Format: (marker)
% If the ROTATING_FRAME option is activated, this option force
% the velocity on the boundaries specified to 0.0
MARKER_SHROUD= (NONE)
%
% Interface (s) definition, identifies the surface shared by
% two different zones. The interface is defined by listing pairs of
% markers (one from each zone connected by the interface)
% Example:
% Given an arbitrary number of zones (A, B, C, ...)
% A and B share a surface, interface 1
% A and C share a surface, interface 2
% Format: ( marker_A_on_interface_1, marker_B_on_interface_1,
% marker_A_on_interface_2, marker_C_on_interface_2, ... )
%
MARKER_ZONE_INTERFACE= ( NONE )
%
% Specifies the interface (s)
% The kind of interface is defined by listing pairs of markers (one from each
% zone connected by the interface)
% Example:
% Given an arbitrary number of zones (A, B, C, ...)
% A and B share a surface, interface 1
% A and C share a surface, interface 2
% Format: ( marker_A_on_interface_1, marker_B_on_interface_1,
% marker_A_on_interface_2, marker_C_on_interface_2, ... )
%
MARKER_FLUID_INTERFACE= ( NONE )
%
% Kind of interface interpolation among different zones (NEAREST_NEIGHBOR,
% ISOPARAMETRIC, SLIDING_MESH)
KIND_INTERPOLATION= NEAREST_NEIGHBOR
%
% Inflow and Outflow markers must be specified, for each blade (zone), following
% the natural groth of the machine (i.e, from the first blade to the last)
MARKER_TURBOMACHINERY= ( NONE )
%
% Mixing-plane interface markers must be specified to activate the transfer of
% information between zones
MARKER_MIXINGPLANE_INTERFACE= ( NONE )
%
% Giles boundary condition for inflow, outfolw and mixing-plane
% Format inlet: ( marker, TOTAL_CONDITIONS_PT, Total Pressure , Total Temperature,
% Flow dir-norm, Flow dir-tang, Flow dir-span, under-relax-avg, under-relax-fourier)
% Format outlet: ( marker, STATIC_PRESSURE, Static Pressure value, -, -, -, -, under-relax-avg, under-relax-fourier)
% Format mixing-plane in and out: ( marker, MIXING_IN or MIXING_OUT, -, -, -, -, -, -, under-relax-avg, under-relax-fourier)
MARKER_GILES= ( NONE )
%
% This option insert an extra under relaxation factor for the Giles BC at the hub
% and shroud (under relax factor applied, span percentage to under relax)
GILES_EXTRA_RELAXFACTOR= ( 0.05, 0.05)
%
% YES Non reflectivity activated, NO the Giles BC behaves as a normal 1D characteristic-based BC
SPATIAL_FOURIER= NO
% ------------------------ SURFACES IDENTIFICATION ----------------------------%
%
% Marker(s) of the surface in the surface flow solution file
MARKER_PLOTTING = ( airfoil )
%
% Marker(s) of the surface where the non-dimensional coefficients are evaluated.
MARKER_MONITORING = ( airfoil )
%
% Viscous wall markers for which wall functions must be applied. (NONE = no marker)
% Format: ( marker name, wall function type -NO_WALL_FUNCTION, STANDARD_WALL_FUNCTION,
% ADAPTIVE_WALL_FUNCTION, SCALABLE_WALL_FUNCTION, EQUILIBRIUM_WALL_MODEL,
% NONEQUILIBRIUM_WALL_MODEL-, ... )
MARKER_WALL_FUNCTIONS= ( airfoil, NO_WALL_FUNCTION )
%
% Marker(s) of the surface where custom thermal BC's are defined.
MARKER_PYTHON_CUSTOM = ( NONE )
%
% Marker(s) of the surface where obj. func. (design problem) will be evaluated
MARKER_DESIGNING = ( airfoil )
%
% Marker(s) of the surface that is going to be analyzed in detail (massflow, average pressure, distortion, etc)
MARKER_ANALYZE = ( airfoil )
%
% Method to compute the average value in MARKER_ANALYZE (AREA, MASSFLUX).
MARKER_ANALYZE_AVERAGE = MASSFLUX
% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= GREEN_GAUSS
%
% CFL number (initial value for the adaptive CFL number)
CFL_NUMBER= 15.0
%
% Adaptive CFL number (NO, YES)
CFL_ADAPT= NO
%
% Parameters of the adaptive CFL number (factor down, factor up, CFL min value,
% CFL max value )
CFL_ADAPT_PARAM= ( 0.1, 2.0, 10.0, 1e10 )
%
% Maximum Delta Time in local time stepping simulations
MAX_DELTA_TIME= 1E6
%
% Runge-Kutta alpha coefficients
RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 )
%
% Objective function in gradient evaluation (DRAG, LIFT, SIDEFORCE, MOMENT_X,
% MOMENT_Y, MOMENT_Z, EFFICIENCY, BUFFET,
% EQUIVALENT_AREA, NEARFIELD_PRESSURE,
% FORCE_X, FORCE_Y, FORCE_Z, THRUST,
% TORQUE, TOTAL_HEATFLUX,
% MAXIMUM_HEATFLUX, INVERSE_DESIGN_PRESSURE,
% INVERSE_DESIGN_HEATFLUX, SURFACE_TOTAL_PRESSURE,
% SURFACE_MASSFLOW, SURFACE_STATIC_PRESSURE, SURFACE_MACH)
% For a weighted sum of objectives: separate by commas, add OBJECTIVE_WEIGHT and MARKER_MONITORING in matching order.
OBJECTIVE_FUNCTION= DRAG
%
% List of weighting values when using more than one OBJECTIVE_FUNCTION. Separate by commas and match with MARKER_MONITORING.
OBJECTIVE_WEIGHT = 1.0
% ----------- SLOPE LIMITER AND DISSIPATION SENSOR DEFINITION -----------------%
%
% Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations.
% Required for 2nd order upwind schemes (NO, YES)
MUSCL_FLOW= YES
%
% Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG,
% BARTH_JESPERSEN, VAN_ALBADA_EDGE)
SLOPE_LIMITER_FLOW= VENKATAKRISHNAN
%
% Monotonic Upwind Scheme for Conservation Laws (TVD) in the turbulence equations.
% Required for 2nd order upwind schemes (NO, YES)
MUSCL_TURB= NO
%
% Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG,
% BARTH_JESPERSEN, VAN_ALBADA_EDGE)
SLOPE_LIMITER_TURB= VENKATAKRISHNAN
%
% Monotonic Upwind Scheme for Conservation Laws (TVD) in the adjoint flow equations.
% Required for 2nd order upwind schemes (NO, YES)
MUSCL_ADJFLOW= YES
%
% Slope limiter (NONE, VENKATAKRISHNAN, BARTH_JESPERSEN, VAN_ALBADA_EDGE,
% SHARP_EDGES, WALL_DISTANCE)
SLOPE_LIMITER_ADJFLOW= VENKATAKRISHNAN
%
% Monotonic Upwind Scheme for Conservation Laws (TVD) in the turbulence adjoint equations.
% Required for 2nd order upwind schemes (NO, YES)
MUSCL_ADJTURB= NO
%
% Slope limiter (NONE, VENKATAKRISHNAN, BARTH_JESPERSEN, VAN_ALBADA_EDGE)
SLOPE_LIMITER_ADJTURB= VENKATAKRISHNAN
%
% Coefficient for the Venkat's limiter (upwind scheme). A larger values decrease
% the extent of limiting, values approaching zero cause
% lower-order approximation to the solution (0.05 by default)
VENKAT_LIMITER_COEFF= 0.05
%
% Reference coefficient for detecting sharp edges (3.0 by default).
REF_SHARP_EDGES = 3.0
%
% Coefficient for the adjoint sharp edges limiter (3.0 by default).
ADJ_SHARP_LIMITER_COEFF= 3.0
%
% Remove sharp edges from the sensitivity evaluation (NO, YES)
SENS_REMOVE_SHARP = NO
%
% Freeze the value of the limiter after a number of iterations
LIMITER_ITER= 999999
%
% 1st order artificial dissipation coefficients for
% the Lax–Friedrichs method ( 0.15 by default )
LAX_SENSOR_COEFF= 0.15
%
% 2nd and 4th order artificial dissipation coefficients for
% the JST method ( 0.5, 0.02 by default )
JST_SENSOR_COEFF= ( 0.5, 0.02 )
%
% 1st order artificial dissipation coefficients for
% the adjoint Lax–Friedrichs method ( 0.15 by default )
ADJ_LAX_SENSOR_COEFF= 0.15
%
% 2nd, and 4th order artificial dissipation coefficients for
% the adjoint JST method ( 0.5, 0.02 by default )
ADJ_JST_SENSOR_COEFF= ( 0.5, 0.02 )
% ------------------------ LINEAR SOLVER DEFINITION ---------------------------%
%
% Linear solver or smoother for implicit formulations:
% BCGSTAB, FGMRES, RESTARTED_FGMRES, CONJUGATE_GRADIENT (self-adjoint problems only), SMOOTHER.
LINEAR_SOLVER= FGMRES
%
% Same for discrete adjoint (smoothers not supported)
DISCADJ_LIN_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver or type of smoother (ILU, LU_SGS, LINELET, JACOBI)
LINEAR_SOLVER_PREC= ILU
%
% Same for discrete adjoint (JACOBI or ILU)
DISCADJ_LIN_PREC= ILU
%
% Linael solver ILU preconditioner fill-in level (0 by default)
LINEAR_SOLVER_ILU_FILL_IN= 0
%
% Minimum error of the linear solver for implicit formulations
LINEAR_SOLVER_ERROR= 1E-6
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 5
%
% Restart frequency for RESTARTED_FGMRES
LINEAR_SOLVER_RESTART_FREQUENCY= 10
%
% Relaxation factor for smoother-type solvers (LINEAR_SOLVER= SMOOTHER)
LINEAR_SOLVER_SMOOTHER_RELAXATION= 1.0
% -------------------------- MULTIGRID PARAMETERS -----------------------------%
%
% Multi-grid levels (0 = no multi-grid)
MGLEVEL= 0
%
% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE)
MGCYCLE= V_CYCLE
%
% Multi-grid pre-smoothing level
MG_PRE_SMOOTH= ( 1, 2, 3, 3 )
%
% Multi-grid post-smoothing level
MG_POST_SMOOTH= ( 0, 0, 0, 0 )
%
% Jacobi implicit smoothing of the correction
MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 )
%
% Damping factor for the residual restriction
MG_DAMP_RESTRICTION= 0.75
%
% Damping factor for the correction prolongation
MG_DAMP_PROLONGATION= 0.75
% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, AUSMPLUSUP,
% AUSMPLUSUP2, HLLC, TURKEL_PREC, MSW, FDS, SLAU, SLAU2)
CONV_NUM_METHOD_FLOW= ROE
%
% Roe Low Dissipation function for Hybrid RANS/LES simulations (FD, NTS, NTS_DUCROS)
ROE_LOW_DISSIPATION= FD
%
% Post-reconstruction correction for low Mach number flows (NO, YES)
LOW_MACH_CORR= NO
%
% Roe-Turkel preconditioning for low Mach number flows (NO, YES)
LOW_MACH_PREC= NO
%
% Use numerically computed Jacobians for AUSM+up(2) and SLAU(2)
% Slower per iteration but potentialy more stable and capable of higher CFL
USE_ACCURATE_FLUX_JACOBIANS= NO
%
% Entropy fix coefficient (0.0 implies no entropy fixing, 1.0 implies scalar
% artificial dissipation)
ENTROPY_FIX_COEFF= 0.0
%
% Higher values than 1 (3 to 4) make the global Jacobian of central schemes (compressible flow
% only) more diagonal dominant (but mathematically incorrect) so that higher CFL can be used.
CENTRAL_JACOBIAN_FIX_FACTOR= 4.0
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT
% ------------------- FEM FLOW NUMERICAL METHOD DEFINITION --------------------%
%
% FEM numerical method (DG)
NUM_METHOD_FEM_FLOW= DG
%
% Riemann solver used for DG (ROE, LAX-FRIEDRICH, AUSM, AUSMPW+, HLLC, VAN_LEER)
RIEMANN_SOLVER_FEM= ROE
%
% Constant factor applied for quadrature with straight elements (2.0 by default)
QUADRATURE_FACTOR_STRAIGHT_FEM = 2.0
%
% Constant factor applied for quadrature with curved elements (3.0 by default)
QUADRATURE_FACTOR_CURVED_FEM = 3.0
%
% Factor for the symmetrizing terms in the DG FEM discretization (1.0 by default)
THETA_INTERIOR_PENALTY_DG_FEM = 1.0
%
% Compute the entropy in the fluid model (YES, NO)
COMPUTE_ENTROPY_FLUID_MODEL= YES
%
% Use the lumped mass matrix for steady DGFEM computations (NO, YES)
USE_LUMPED_MASSMATRIX_DGFEM= NO
%
% Only compute the exact Jacobian of the spatial discretization (NO, YES)
JACOBIAN_SPATIAL_DISCRETIZATION_ONLY= NO
%
% Number of aligned bytes for the matrix multiplications. Multiple of 64. (128 by default)
ALIGNED_BYTES_MATMUL= 128
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, CLASSICAL_RK4_EXPLICIT, ADER_DG)
TIME_DISCRE_FEM_FLOW= RUNGE-KUTTA_EXPLICIT
%
% Number of time DOFs for the predictor step of ADER-DG (2 by default)
%TIME_DOFS_ADER_DG= 2
% Factor applied during quadrature in time for ADER-DG. (2.0 by default)
%QUADRATURE_FACTOR_TIME_ADER_DG = 2.0
%
% Type of discretization used in the predictor step of ADER-DG (ADER_ALIASED_PREDICTOR, ADER_NON_ALIASED_PREDICTOR)
ADER_PREDICTOR= ADER_ALIASED_PREDICTOR