-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathjump_diffusion.py
191 lines (162 loc) · 7.88 KB
/
jump_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
def jump_diffusion(S=1, X=0.5, T=1, mu=0.12, sigma=0.3, Lambda=0.25,
a=0.2, b=0.2, Nsteps=252, Nsim=100, alpha=0.05, seed=None):
'''
Monte Carlo simulation [1] of Merton's Jump Diffusion Model [2].
The model is specified through the stochastic differential equation (SDE):
dS(t)
----- = mu*dt + sigma*dW(t) + dJ(t)
S(t-)
with:
mu, sigma: constants, the drift and volatility coefficients of the stock
price process;
W: a standard one-dimensional Brownian motion;
J: a jump process, independent of W, with piecewise constant sample paths.
It is defined as the sum of multiplicative jumps Y(j).
Input
---------------------------------------------------------------------------
S: float. The current asset price.
X: float. The strike price, i.e. the price at which the asset may be bought
(call) or sold (put) in an option contract [3].
T: int or float. The maturity of the option contract, i.e. the final
monitoring date.
mu, sigma: float. Respectively, the drift and volatility coefficients of
the asset price process.
Lambda: float. The intensity of the Poisson process in the jump diffusion
model ('lambda' is a protected keyword in Python).
a, b: float. Parameters required to calculate, respectively, the mean and
variance of a standard lognormal distribution, log(x) ~ N(a, b**2).
(see code).
Nsteps: int. The number of monitoring dates, i.e. the time steps.
Nsim: int. The number of Monte Carlo simulations (at least 10,000 required
to generate stable results).
alpha: float. The confidence interval significance level, in [0, 1].
seed: int. Set random seed, for reproducibility of the results. Default
value is None (the best seed available is used, but outcome will vary
in each experiment).
References
---------------------------------------------------------------------------
[1] Glasserman, P. (2003): 'Monte Carlo Methods in Financial Engineering',
Springer Applications of Mathematics, Vol. 53
[2] Merton, R.C. (1976): 'Option Pricing when Underlying Stock Returns are
Discontinuous', Journal of Financial Economics, 3:125-144.
[3] Hull, J.C. (2017): 'Options, Futures, and Other Derivatives', 10th
Edition, Pearson.
'''
# Import required libraries
import time
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
import seaborn as sns
# Set random seed
np.random.seed(seed)
'''
Time the whole path-generating process, using a tic-toc method familiar
to MATLAB users
'''
tic = time.time()
# Calculate the length of the time step
Delta_t = T/Nsteps
'''
Compute mean and variance of a standard lognormal distribution from user
defined parameters a and b. The latter are useful to simulate the jump
component in Monte Carlo.
a and b are chosen such that log(Y(j)) ~ N(a, b**2). This implies that the
mean and variance of the multiplicative jumps will be:
* mean_Y = np.exp(a + 0.5*(b**2))
* variance_Y = np.exp(2*a + b**2) * (np.exp(b**2)-1)
'''
mean_Y = np.exp(a + 0.5*(b**2))
variance_Y = np.exp(2*a + b**2) * (np.exp(b**2)-1)
'''
Calculate the theoretical drift (M) and volatility (V) of the stock price
process under Merton's jump diffusion model. These values can be used to
monitor the rate of convergence of Monte Carlo estimates as the number of
simulated experiments increases, and can help spot errors, if any, in
implementing the model.
'''
M = S * np.exp(mu*T + Lambda*T*(mean_Y-1))
V = S**2 * (np.exp((2*mu + sigma**2)*T \
+ Lambda*T*(variance_Y + mean_Y**2 - 1)) \
- np.exp(2*mu*T + 2*Lambda*T*(mean_Y - 1)))
'''
Generate an Nsim x (Nsteps+1) array of zeros to preallocate the simulated
paths of the Monte Carlo simulation. Each row of the matrix represents a
full, possible path for the stock, each column all values of the asset at
a particular instant in time.
'''
simulated_paths = np.zeros([Nsim, Nsteps+1])
# Replace the first column of the array with the vector of initial price S
simulated_paths[:,0] = S
'''
To account for the multiple sources of uncertainty in the jump diffusion
process, generate three arrays of random variables.
- The first one is related to the standard Brownian motion, the component
epsilon(0,1) in epsilon(0,1) * np.sqrt(dt);
- The second and third ones model the jump, a compound Poisson process:
the former (a Poisson process with intensity Lambda) causes the asset
price to jump randomly (random timing); the latter (a Gaussian variable)
defines both the direction (sign) and intensity (magnitude) of the jump.
'''
Z_1 = np.random.normal(size=[Nsim, Nsteps])
Z_2 = np.random.normal(size=[Nsim, Nsteps])
Poisson = np.random.poisson(Lambda*Delta_t, [Nsim, Nsteps])
# Populate the matrix with Nsim randomly generated paths of length Nsteps
for i in range(Nsteps):
simulated_paths[:,i+1] = simulated_paths[:,i]*np.exp((mu
- sigma**2/2)*Delta_t + sigma*np.sqrt(Delta_t) \
* Z_1[:,i] + a*Poisson[:,i] \
+ np.sqrt(b**2) * np.sqrt(Poisson[:,i]) \
* Z_2[:,i])
# Single out array of simulated prices at maturity T
final_prices = simulated_paths[:,-1]
# Compute mean, variance, standard deviation, skewness, excess kurtosis
mean_jump = np.mean(final_prices)
var_jump = np.var(final_prices)
std_jump = np.std(final_prices)
skew_jump = stats.skew(final_prices)
kurt_jump = stats.kurtosis(final_prices)
# Calculate confidence interval for the mean
ci_low = mean_jump - std_jump/np.sqrt(Nsim)*stats.norm.ppf(1-0.5*alpha)
ci_high = mean_jump + std_jump/np.sqrt(Nsim)*stats.norm.ppf(1-0.5*alpha)
# Print statistics, align results
print("Merton's Jump Diffusion Model")
print('-----------------------------')
print('Theoretical Moments')
print('-----------------------------')
print('Mean (M){:>21.4f}'.format(M))
print('Variance (V){:>17.4f}'.format(V))
print('\nMonte Carlo Estimates')
print('-----------------------------')
print('Mean {:>24.4f}'.format(mean_jump))
print('Variance {:>20.4f}'.format(var_jump))
print('Standard deviation {:>10.4f}'.format(std_jump))
print('Skewness {:>20.4f}'.format(skew_jump))
print('Excess kurtosis {:>13.4f}'.format(kurt_jump))
print('\nConfidence interval, Mean')
print('-----------------------------')
print('Alpha {:>23.2f}'.format(alpha))
print('Lower bound {:>17.4f}'.format(ci_low))
print('Upper bound {:>17.4f}'.format(ci_high))
# Choose palette, figure size, and define figure axes
sns.set(palette='viridis')
plt.figure(figsize=(10,8))
ax = plt.axes()
# Generate t, the time variable on the abscissae
t = np.linspace(0, T, Nsteps+1) * Nsteps
# Plot the Monte Carlo simulated stock price paths
jump_diffusion = ax.plot(t, simulated_paths.transpose());
# Make drawn paths thinner by decreasing line width
plt.setp(jump_diffusion, linewidth=1);
# Set title (LaTeX notation) and x- and y- labels
ax.set(title="Monte Carlo simulated stock price paths in Merton's jump \
diffusion model\n$S_0$ = {}, $\mu$ = {}, $\sigma$ = {}, $a$ = {}, $b$ = {}, \
$\lambda$ = {}, $T$ = {}, Nsteps = {}, Nsim = {}"\
.format(S, mu, sigma, a, b, Lambda, T, Nsteps, Nsim), \
xlabel='Time (days)', ylabel='Stock price')
# Display figure in a Python environment
plt.show()
# Time and print the elapsed time
toc = time.time()
elapsed_time = toc - tic
print('Total running time: {:.2f} ms'.format(elapsed_time*1000))