-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathgeometry.cpp
1029 lines (854 loc) · 26.2 KB
/
geometry.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <map>
#include <algorithm>
#include <cstdio>
#include <unistd.h>
#include <cmath>
#include <limits.h>
#include <sqlite3.h>
#include <mapbox/geometry/point.hpp>
#include <mapbox/geometry/multi_polygon.hpp>
#include <mapbox/geometry/snap_rounding.hpp>
#include "geometry.hpp"
#include "projection.hpp"
#include "serial.hpp"
#include "main.hpp"
#include "options.hpp"
#include "errors.hpp"
drawvec decode_geometry(const char **meta, int z, unsigned tx, unsigned ty, long long *bbox, unsigned initial_x, unsigned initial_y) {
drawvec out;
bbox[0] = LLONG_MAX;
bbox[1] = LLONG_MAX;
bbox[2] = LLONG_MIN;
bbox[3] = LLONG_MIN;
long long wx = initial_x, wy = initial_y;
while (1) {
draw d;
deserialize_byte(meta, &d.op);
if (d.op == VT_END) {
break;
}
if (d.op == VT_MOVETO || d.op == VT_LINETO) {
long long dx, dy;
deserialize_long_long(meta, &dx);
deserialize_long_long(meta, &dy);
wx += dx * (1 << geometry_scale);
wy += dy * (1 << geometry_scale);
long long wwx = wx;
long long wwy = wy;
if (z != 0) {
wwx -= tx << (32 - z);
wwy -= ty << (32 - z);
}
bbox[0] = std::min(wwx, bbox[0]);
bbox[1] = std::min(wwy, bbox[1]);
bbox[2] = std::max(wwx, bbox[2]);
bbox[3] = std::max(wwy, bbox[3]);
d.x = wwx;
d.y = wwy;
}
out.push_back(d);
}
return out;
}
void check_polygon(drawvec &geom) {
geom = remove_noop(geom, VT_POLYGON, 0);
mapbox::geometry::multi_polygon<long long> mp;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
if (j >= i + 4) {
mapbox::geometry::linear_ring<long long> lr;
for (size_t k = i; k < j; k++) {
lr.push_back({geom[k].x, geom[k].y});
}
if (lr.size() >= 3) {
mapbox::geometry::polygon<long long> p;
p.push_back(std::move(lr));
mp.push_back(std::move(p));
}
}
i = j - 1;
}
}
mapbox::geometry::multi_polygon<long long> mp2 = mapbox::geometry::snap_round(mp, true, true);
if (mp != mp2) {
fprintf(stderr, "Internal error: self-intersecting polygon\n");
}
size_t outer_start = -1;
size_t outer_len = 0;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
double area = get_area(geom, i, j);
if (area > 0) {
outer_start = i;
outer_len = j - i;
} else {
for (size_t k = i; k < j; k++) {
if (!pnpoly(geom, outer_start, outer_len, geom[k].x, geom[k].y)) {
bool on_edge = false;
for (size_t l = outer_start; l < outer_start + outer_len; l++) {
if (geom[k].x == geom[l].x || geom[k].y == geom[l].y) {
on_edge = true;
break;
}
}
if (!on_edge) {
fprintf(stderr, "%lld,%lld at %lld not in outer ring (%lld to %lld)\n", (long long) geom[k].x, (long long) geom[k].y, (long long) k, (long long) outer_start, (long long) (outer_start + outer_len));
}
}
}
}
}
}
}
int quick_check(const long long *bbox, int z, long long buffer) {
long long min = 0;
long long area = 1LL << (32 - z);
// bbox entirely within the tile proper
if (bbox[0] > min && bbox[1] > min && bbox[2] < area && bbox[3] < area) {
return 1;
}
min -= buffer * area / 256;
area += buffer * area / 256;
// bbox entirely within the tile, including its buffer
if (bbox[0] > min && bbox[1] > min && bbox[2] < area && bbox[3] < area) {
return 3;
}
// bbox entirely outside the tile
if (bbox[0] > area || bbox[1] > area) {
return 0;
}
if (bbox[2] < min || bbox[3] < min) {
return 0;
}
// some overlap of edge
return 2;
}
bool point_within_tile(long long x, long long y, int z) {
// No adjustment for buffer, because the point must be
// strictly within the tile to appear exactly once
long long area = 1LL << (32 - z);
return x >= 0 && y >= 0 && x < area && y < area;
}
// If any line segment crosses a tile boundary, add a node there
// that cannot be simplified away, to prevent the edge of any
// feature from jumping abruptly at the tile boundary.
drawvec impose_tile_boundaries(const drawvec &geom, long long extent) {
drawvec out;
for (size_t i = 0; i < geom.size(); i++) {
if (i > 0 && geom[i].op == VT_LINETO && (geom[i - 1].op == VT_MOVETO || geom[i - 1].op == VT_LINETO)) {
long long x1 = geom[i - 1].x;
long long y1 = geom[i - 1].y;
long long x2 = geom[i - 0].x;
long long y2 = geom[i - 0].y;
int c = clip(&x1, &y1, &x2, &y2, 0, 0, extent, extent);
if (c > 1) { // clipped
if (x1 != geom[i - 1].x || y1 != geom[i - 1].y) {
out.emplace_back(VT_LINETO, x1, y1);
out[out.size() - 1].necessary = 1;
}
if (x2 != geom[i - 0].x || y2 != geom[i - 0].y) {
out.emplace_back(VT_LINETO, x2, y2);
out[out.size() - 1].necessary = 1;
}
}
}
out.push_back(geom[i]);
}
return out;
}
drawvec simplify_lines(drawvec &geom, int z, int tx, int ty, int detail, bool mark_tile_bounds, double simplification, size_t retain, drawvec const &shared_nodes, struct node *shared_nodes_map, size_t nodepos, std::string const &shared_nodes_bloom) {
int res = 1 << (32 - detail - z);
long long area = 1LL << (32 - z);
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
geom[i].necessary = 1;
} else if (geom[i].op == VT_LINETO) {
geom[i].necessary = 0;
// if this is actually the endpoint, not an intermediate point,
// it will be marked as necessary below
} else {
geom[i].necessary = 1;
}
if (prevent[P_SIMPLIFY_SHARED_NODES]) {
// This is kind of weird, because we have two lists of shared nodes to look through:
// * the drawvec, which is nodes that were introduced during clipping to the tile edge,
// and which are in local tile coordinates
// * the shared_nodes_map, which was made globally before tiling began, and which
// is in global quadkey coordinates.
// To look through the latter, we need to offset and encode the coordinates
// of the feature we are simplifying.
auto pt = std::lower_bound(shared_nodes.begin(), shared_nodes.end(), geom[i]);
if (pt != shared_nodes.end() && *pt == geom[i]) {
geom[i].necessary = true;
}
if (nodepos > 0) {
// offset to global
draw d = geom[i];
if (z != 0) {
d.x += tx * (1LL << (32 - z));
d.y += ty * (1LL << (32 - z));
}
struct node n;
n.index = encode_vertex((unsigned) d.x, (unsigned) d.y);
size_t bloom_ix = n.index % (shared_nodes_bloom.size() * 8);
unsigned char bloom_mask = 1 << (bloom_ix & 7);
bloom_ix >>= 3;
if (shared_nodes_bloom[bloom_ix] & bloom_mask) {
if (bsearch(&n, shared_nodes_map, nodepos / sizeof(node), sizeof(node), nodecmp) != NULL) {
geom[i].necessary = true;
}
}
}
}
}
if (mark_tile_bounds) {
geom = impose_tile_boundaries(geom, area);
}
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
geom[i].necessary = 1;
geom[j - 1].necessary = 1;
// empirical mapping from douglas-peucker simplifications
// to visvalingam simplifications that yield similar
// output sizes
double sim = simplification * (0.1596 * z + 0.878);
double scale = (res * sim) * (res * sim);
scale = exp(1.002 * log(scale) + 0.3043);
if (j - i > 1) {
if (additional[A_VISVALINGAM]) {
visvalingam(geom, i, j, scale, retain);
} else {
douglas_peucker(geom, i, j - i, res * simplification, 2, retain, prevent[P_SIMPLIFY_SHARED_NODES]);
}
}
i = j - 1;
}
}
size_t out = 0;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].necessary) {
geom[out++] = geom[i];
}
}
geom.resize(out);
return geom;
}
drawvec reorder_lines(const drawvec &geom) {
// Only reorder simple linestrings with a single moveto
if (geom.size() == 0) {
return geom;
}
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
if (i != 0) {
// moveto is not at the start, so it is not simple
return geom;
}
} else if (geom[i].op == VT_LINETO) {
if (i == 0) {
// lineto is at the start: can't happen
return geom;
}
} else {
// something other than moveto or lineto: can't happen
return geom;
}
}
// Reorder anything that goes up and to the left
// instead of down and to the right
// so that it will coalesce better
unsigned long long l1 = encode_index(geom[0].x, geom[0].y);
unsigned long long l2 = encode_index(geom[geom.size() - 1].x, geom[geom.size() - 1].y);
if (l1 > l2) {
drawvec out;
for (size_t i = 0; i < geom.size(); i++) {
out.push_back(geom[geom.size() - 1 - i]);
}
out[0].op = VT_MOVETO;
if (out.size() > 1) {
out[out.size() - 1].op = VT_LINETO;
}
return out;
}
return geom;
}
#if 0
std::vector<drawvec> chop_polygon(std::vector<drawvec> &geoms) {
while (1) {
bool again = false;
std::vector<drawvec> out;
for (size_t i = 0; i < geoms.size(); i++) {
if (geoms[i].size() > 700) {
static bool warned = false;
if (!warned) {
fprintf(stderr, "Warning: splitting up polygon with more than 700 sides\n");
warned = true;
}
long long midx = 0, midy = 0, count = 0;
long long maxx = LLONG_MIN, maxy = LLONG_MIN, minx = LLONG_MAX, miny = LLONG_MAX;
for (size_t j = 0; j < geoms[i].size(); j++) {
if (geoms[i][j].op == VT_MOVETO || geoms[i][j].op == VT_LINETO) {
midx += geoms[i][j].x;
midy += geoms[i][j].y;
count++;
if (geoms[i][j].x > maxx) {
maxx = geoms[i][j].x;
}
if (geoms[i][j].y > maxy) {
maxy = geoms[i][j].y;
}
if (geoms[i][j].x < minx) {
minx = geoms[i][j].x;
}
if (geoms[i][j].y < miny) {
miny = geoms[i][j].y;
}
}
}
midx /= count;
midy /= count;
drawvec c1, c2;
if (maxy - miny > maxx - minx) {
c1 = simple_clip_poly(geoms[i], minx, miny, maxx, midy, prevent[P_SIMPLIFY_EDGE_NODES]);
c2 = simple_clip_poly(geoms[i], minx, midy, maxx, maxy, prevent[P_SIMPLIFY_EDGE_NODES]);
} else {
c1 = simple_clip_poly(geoms[i], minx, miny, midx, maxy, prevent[P_SIMPLIFY_EDGE_NODES]);
c2 = simple_clip_poly(geoms[i], midx, miny, maxx, maxy, prevent[P_SIMPLIFY_EDGE_NODES]);
}
if (c1.size() >= geoms[i].size()) {
fprintf(stderr, "Subdividing complex polygon failed\n");
} else {
out.push_back(c1);
}
if (c2.size() >= geoms[i].size()) {
fprintf(stderr, "Subdividing complex polygon failed\n");
} else {
out.push_back(c2);
}
again = true;
} else {
out.push_back(geoms[i]);
}
}
if (!again) {
return out;
}
geoms = out;
}
}
#endif
drawvec stairstep(drawvec &geom, int z, int detail) {
drawvec out;
double scale = 1 << (32 - detail - z);
for (size_t i = 0; i < geom.size(); i++) {
geom[i].x = std::round(geom[i].x / scale);
geom[i].y = std::round(geom[i].y / scale);
}
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
out.push_back(geom[i]);
} else if (out.size() > 0) {
long long x0 = out[out.size() - 1].x;
long long y0 = out[out.size() - 1].y;
long long x1 = geom[i].x;
long long y1 = geom[i].y;
bool swap = false;
if (y0 < y1) {
swap = true;
std::swap(x0, x1);
std::swap(y0, y1);
}
long long xx = x0, yy = y0;
long long dx = std::abs(x1 - x0);
long long sx = (x0 < x1) ? 1 : -1;
long long dy = std::abs(y1 - y0);
long long sy = (y0 < y1) ? 1 : -1;
long long err = ((dx > dy) ? dx : -dy) / 2;
int last = -1;
drawvec tmp;
tmp.push_back(draw(VT_LINETO, xx, yy));
while (xx != x1 || yy != y1) {
long long e2 = err;
if (e2 > -dx) {
err -= dy;
xx += sx;
if (last == 1) {
tmp[tmp.size() - 1] = draw(VT_LINETO, xx, yy);
} else {
tmp.push_back(draw(VT_LINETO, xx, yy));
}
last = 1;
}
if (e2 < dy) {
err += dx;
yy += sy;
if (last == 2) {
tmp[tmp.size() - 1] = draw(VT_LINETO, xx, yy);
} else {
tmp.push_back(draw(VT_LINETO, xx, yy));
}
last = 2;
}
}
if (swap) {
for (size_t j = tmp.size(); j > 0; j--) {
out.push_back(tmp[j - 1]);
}
} else {
for (size_t j = 0; j < tmp.size(); j++) {
out.push_back(tmp[j]);
}
}
// out.push_back(draw(VT_LINETO, xx, yy));
} else {
fprintf(stderr, "Can't happen: stairstepping lineto with no moveto\n");
exit(EXIT_IMPOSSIBLE);
}
}
for (size_t i = 0; i < out.size(); i++) {
out[i].x *= 1 << (32 - detail - z);
out[i].y *= 1 << (32 - detail - z);
}
return out;
}
// https://github.com/Turfjs/turf/blob/master/packages/turf-center-of-mass/index.ts
//
// The MIT License (MIT)
//
// Copyright (c) 2019 Morgan Herlocker
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
draw centerOfMass(const drawvec &dv, size_t start, size_t end, draw centre) {
std::vector<draw> coords;
for (size_t i = start; i < end; i++) {
coords.push_back(dv[i]);
}
// First, we neutralize the feature (set it around coordinates [0,0]) to prevent rounding errors
// We take any point to translate all the points around 0
draw translation = centre;
double sx = 0;
double sy = 0;
double sArea = 0;
draw pi, pj;
double xi, xj, yi, yj, a;
std::vector<draw> neutralizedPoints;
for (size_t i = 0; i < coords.size(); i++) {
neutralizedPoints.push_back(draw(coords[i].op, coords[i].x - translation.x, coords[i].y - translation.y));
}
for (size_t i = 0; i < coords.size() - 1; i++) {
// pi is the current point
pi = neutralizedPoints[i];
xi = pi.x;
yi = pi.y;
// pj is the next point (pi+1)
pj = neutralizedPoints[i + 1];
xj = pj.x;
yj = pj.y;
// a is the common factor to compute the signed area and the final coordinates
a = xi * yj - xj * yi;
// sArea is the sum used to compute the signed area
sArea += a;
// sx and sy are the sums used to compute the final coordinates
sx += (xi + xj) * a;
sy += (yi + yj) * a;
}
// Shape has no area: fallback on turf.centroid
if (sArea == 0) {
return centre;
} else {
// Compute the signed area, and factorize 1/6A
double area = sArea * 0.5;
double areaFactor = 1 / (6 * area);
// Compute the final coordinates, adding back the values that have been neutralized
return draw(VT_MOVETO, translation.x + areaFactor * sx, translation.y + areaFactor * sy);
}
}
draw center_of_mass_mp(const drawvec &dv) {
double ringx = 0, ringy = 0;
size_t ringcount = 0;
for (size_t i = 0; i < dv.size(); i++) {
if (dv[i].op == VT_MOVETO) {
double xsum = dv[i].x, ysum = dv[i].y;
ssize_t count = 1;
size_t j;
for (j = i + 1; j < dv.size(); j++) {
if (dv[j].op != VT_LINETO) {
break;
} else {
xsum += dv[j].x;
ysum += dv[j].y;
count++;
}
}
double area = get_area(dv, i, j);
draw centroid(VT_MOVETO, std::llround(xsum / count), std::llround(ysum / count));
draw center = centerOfMass(dv, i, j, centroid);
ringx += center.x * area;
ringy += center.y * area;
ringcount += area;
i = j - 1;
}
}
draw center(VT_MOVETO, ringx / ringcount, ringy / ringcount);
return center;
}
double label_goodness(const drawvec &dv, long long x, long long y) {
int nesting = 0;
for (size_t i = 0; i < dv.size(); i++) {
if (dv[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < dv.size(); j++) {
if (dv[j].op != VT_LINETO) {
break;
}
}
// if it's inside the ring, and it's an outer ring,
// we are nested more; if it's an inner ring, we are
// nested less.
if (pnpoly(dv, i, j - i, x, y)) {
if (get_area(dv, i, j) >= 0) {
nesting++;
} else {
nesting--;
}
}
i = j - 1;
}
}
if (nesting < 1) {
return 0; // outside the polygon is as bad as it gets
}
double closest = INFINITY; // closest distance to the border
for (size_t i = 0; i < dv.size(); i++) {
double dx = dv[i].x - x;
double dy = dv[i].y - y;
double dist = sqrt(dx * dx + dy * dy);
if (dist < closest) {
closest = dist;
}
if (i > 0 && dv[i].op == VT_LINETO) {
dist = distance_from_line(x, y, dv[i - 1].x, dv[i - 1].y, dv[i].x, dv[i].y);
if (dist < closest) {
closest = dist;
}
}
}
return closest;
}
struct sorty {
long long x;
long long y;
};
struct sorty_sorter {
int kind;
sorty_sorter(int k)
: kind(k){};
bool operator()(const sorty &a, const sorty &b) const {
long long xa, ya, xb, yb;
if (kind == 0) { // Y first
xa = a.x;
ya = a.y;
xb = b.x;
yb = b.y;
} else if (kind == 1) { // X first
xa = a.y;
ya = a.x;
xb = b.y;
yb = b.x;
} else if (kind == 2) { // diagonal
xa = a.x + a.y;
ya = a.x - a.y;
xb = b.x + b.y;
yb = b.x - b.y;
} else { // other diagonal
xa = a.x - a.y;
ya = a.x + a.y;
xb = b.x - b.y;
yb = b.x + b.y;
}
if (ya < yb) {
return true;
} else if (ya == yb && xa < xb) {
return true;
} else {
return false;
}
};
};
struct candidate {
long long x;
long long y;
double dist;
bool operator<(const candidate &c) const {
// largest distance sorts first
return dist > c.dist;
};
};
// Generate a label point for a polygon feature.
//
// A good label point will be near the center of the feature and far from any border.
//
// Polylabel is supposed to be able to do this optimally, but can be quite slow
// and sometimes still produces some odd results.
//
// The centroid is often off-center because edges with many curves will be
// weighted higher than edges with straight lines.
//
// Turf's center-of-mass algorithm generally does a good job, but can sometimes
// find a point that is outside the bounds of the polygon or quite close to the edge.
//
// So prefer the center of mass, but if it produces something too close to the border
// or outside the polygon, try a series of gridded points within the feature's bounding box
// until something works well, or if nothing does after several iterations, use the
// least-bad option.
drawvec polygon_to_anchor(const drawvec &geom) {
size_t start = 0, end = 0;
size_t best_area = 0;
std::vector<sorty> points;
// find the largest outer ring, which will be the best thing
// to label if we can do it.
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
sorty sy;
sy.x = geom[j].x;
sy.y = geom[j].y;
points.push_back(sy);
}
double area = get_area(geom, i, j);
if (area > best_area) {
start = i;
end = j;
best_area = area;
}
i = j - 1;
}
}
// If there are no outer rings, don't generate a label point
if (best_area > 0) {
long long xsum = 0;
long long ysum = 0;
size_t count = 0;
long long xmin = LLONG_MAX, ymin = LLONG_MAX, xmax = LLONG_MIN, ymax = LLONG_MIN;
// Calculate centroid and bounding box of biggest ring.
// start + 1 to exclude the first point, which is duplicated as the last
for (size_t k = start + 1; k < end; k++) {
xsum += geom[k].x;
ysum += geom[k].y;
count++;
xmin = std::min(xmin, geom[k].x);
ymin = std::min(ymin, geom[k].y);
xmax = std::max(xmax, geom[k].x);
ymax = std::max(ymax, geom[k].y);
}
if (count > 0) {
// We want label points that are at least a moderate distance from
// the edge of the feature. The threshold for what is too close
// is derived from the area of the feature.
double radius = sqrt(best_area / M_PI);
double goodness_threshold = radius / 5;
// First choice: Turf's center of mass.
draw centroid(VT_MOVETO, xsum / count, ysum / count);
draw d = centerOfMass(geom, start, end, centroid);
double goodness = label_goodness(geom, d.x, d.y);
const char *kind = "mass";
if (goodness < goodness_threshold) {
// Label is too close to the border or outside it,
// so try some other possible points. Sort the vertices
// both by Y and X coordinate and then by diagonals,
// and walk through each set
// in sorted order. Adjacent pairs of coordinates should
// tend to bounce back and forth between rings, so the
// midpoint of each pair will hopefully be somewhere in the
// interior of the polygon.
std::vector<candidate> candidates;
for (size_t pass = 0; pass < 4; pass++) {
std::stable_sort(points.begin(), points.end(), sorty_sorter(pass));
for (size_t i = 1; i < points.size(); i++) {
double dx = points[i].x - points[i - 1].x;
double dy = points[i].y - points[i - 1].y;
double dist = sqrt(dx * dx + dy * dy);
if (dist > 2 * goodness_threshold) {
candidate c;
c.x = (points[i].x + points[i - 1].x) / 2;
c.y = (points[i].y + points[i - 1].y) / 2;
c.dist = dist;
candidates.push_back(c);
}
}
}
// Now sort the accumulate list of segment midpoints by the lengths
// of the segments. Starting from the longest
// segment, if we find one whose midpoint is inside the polygon and
// far enough from any edge to be good enough, stop looking.
std::stable_sort(candidates.begin(), candidates.end());
// only check the top 50 stride midpoints, since this list can be quite large
for (size_t i = 0; i < candidates.size() && i < 50; i++) {
double maybe_goodness = label_goodness(geom, candidates[i].x, candidates[i].y);
if (maybe_goodness > goodness) {
d.x = candidates[i].x;
d.y = candidates[i].y;
goodness = maybe_goodness;
kind = "diagonal";
if (goodness > goodness_threshold) {
break;
}
}
}
}
// We may still not have anything decent, so the next thing to look at
// is points from gridding the bounding box of the largest ring.
if (goodness < goodness_threshold) {
for (long long sub = 2;
sub < 32 && (xmax - xmin) > 2 * sub && (ymax - ymin) > 2 * sub;
sub *= 2) {
for (long long x = 1; x < sub; x++) {
for (long long y = 1; y < sub; y++) {
draw maybe(VT_MOVETO,
xmin + x * (xmax - xmin) / sub,
ymin + y * (ymax - ymin) / sub);
double maybe_goodness = label_goodness(geom, maybe.x, maybe.y);
if (maybe_goodness > goodness) {
// better than the previous
d = maybe;
goodness = maybe_goodness;
kind = "grid";
}
}
}
if (goodness > goodness_threshold) {
break;
}
}
// There is nothing really good. Is the centroid maybe better?
// If not, we're stuck with whatever the best we found was.
double maybe_goodness = label_goodness(geom, centroid.x, centroid.y);
if (maybe_goodness > goodness) {
d = centroid;
goodness = maybe_goodness;
kind = "centroid";
}
if (goodness <= 0) {
double lon, lat;
tile2lonlat(d.x, d.y, 32, &lon, &lat);
static std::atomic<long long> warned(0);
if (warned++ < 10) {
fprintf(stderr, "could not find good label point: %s %f,%f\n", kind, lat, lon);
}
}
}
drawvec dv;
dv.push_back(d);
return dv;
}
}
return drawvec();
}
drawvec checkerboard_anchors(drawvec const &geom, int tx, int ty, int z, unsigned long long label_point) {
drawvec out;
// anchor point in world coordinates
unsigned wx, wy;
decode_index(label_point, &wx, &wy);
// upper left of tile in world coordinates
long long tx1 = 0, ty1 = 0;
// lower right of tile in world coordinates;
long long tx2 = 1LL << 32; // , ty2 = 1LL << 32;
if (z != 0) {
tx1 = (long long) tx << (32 - z);
ty1 = (long long) ty << (32 - z);
tx2 = (long long) (tx + 1) << (32 - z);
// ty2 = (long long) (ty + 1) << (32 - z);
}
// upper left of feature in world coordinates
long long bx1 = LLONG_MAX, by1 = LLONG_MAX;
// lower right of feature in world coordinates;
long long bx2 = LLONG_MIN, by2 = LLONG_MIN;
for (auto const &g : geom) {
bx1 = std::min(bx1, g.x + tx1);
by1 = std::min(by1, g.y + ty1);
bx2 = std::max(bx2, g.x + tx1);
by2 = std::max(by2, g.y + ty1);
}
if (bx1 > bx2 || by1 > by2) {
return out;
}
// labels repeat every 0.3 tiles at z0
double spiral_dist = 0.3;
if (z > 0) {
// only every ~6 tiles by the time we get to z15
spiral_dist = spiral_dist * exp(log(z) * 1.2);
}
const long long label_spacing = spiral_dist * (tx2 - tx1);
long long x1 = floor(std::min(bx1 - wx, bx2 - wx) / label_spacing);
long long x2 = ceil(std::max(bx1 - wx, bx2 - wx) / label_spacing);
long long y1 = floor(std::min(by1 - wy, by2 - wy) / label_spacing - 0.5);
long long y2 = ceil(std::max(by1 - wy, by2 - wy) / label_spacing);
for (long long lx = x1; lx <= x2; lx++) {
for (long long ly = y1; ly <= y2; ly++) {
long long x = lx * label_spacing + wx;