-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathLENet_nusc.yaml
106 lines (98 loc) · 3.28 KB
/
LENet_nusc.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
################################################################################
# training parameters
################################################################################
train:
pipeline: "LENet" # model name
loss: "xentropy" # must be either xentropy or iou
max_epochs: 50
batch_size: 32 # batch size
report_batch: 10 # every x batches, report loss
report_epoch: 1 # every x epochs, report validation set
epsilon_w: 0.001 # class weight w = 1 / (content + epsilon_w)
save_summary: False # Summary of weight histograms for tensorboard
save_scans: False # False doesn't save anything, True saves some sample images
# (one per batch of the last calculated batch) in log folder
show_scans: False # show scans during training
workers: 12 # number of threads to get data
syncbn: True # sync batchnorm
act: SiLU # act layer, LeakyReLU, SiLU, Hardswish, GELU
optimizer: "adam" # sgd or adam
scheduler: "consine" # "consine" or "warmup"
consine:
min_lr: 0.00001
max_lr: 0.00200
first_cycle: 50
cycle: 2
wup_epochs: 1
gamma: 1.0
warmup:
lr: 0.01 # learning rate
wup_epochs: 1 # warmup during first XX epochs (can be float)
lr_decay: 0.99 # learning rate decay per epoch after initial cycle (from min lr)
momentum: 0.9 # sgd momentum
aux_loss:
use: True
lamda: [1.0, 1.0, 1.0]
# for mos
residual: False # This needs to be the same as in the dataset params below!
n_input_scans: 2 # This needs to be the same as in the dataset params below!
################################################################################
# postproc parameters
################################################################################
post:
CRF:
use: False
train: True
params: False # this should be a dict when in use
KNN:
use: True # This parameter default is false
params:
knn: 7
search: 7
sigma: 1.0
cutoff: 2.0
################################################################################
# classification head parameters
################################################################################
# dataset (to find parser)
dataset:
labels: "kitti"
scans: "kitti"
max_points: 35000 # max of any scan in dataset
sensor:
name: "HDL32"
type: "spherical" # projective
fov_up: 10
fov_down: -30
img_prop:
width: 1024
height: 32
img_means: #range,x,y,z,signal
- 1.7835
- 0.0325
- 0.1707
- 0.0283
- 2.7328
img_stds: #range,x,y,z,signal
- 9.5803
- 6.7944
- 8.1486
- 1.1270
- 17.4203
# img_means: #range,x,y,z,signal
# - 12.12
# - 10.88
# - 0.23
# - -1.04
# - 0.21
# img_stds: #range,x,y,z,signal
# - 12.32
# - 11.47
# - 6.91
# - 0.86
# - 0.16
# for mos
n_input_scans: 2 # This needs to be the same as in the backbone params above!
residual: False # This needs to be the same as in the backbone params above!
transform: False # tranform the last n_input_scans - 1 frames before concatenation
use_normal: False # if use normal vector as channels of range image